To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we generalize Haglund and Wise’s theory of special cube complexes to groups acting on quasi-median graphs. More precisely, we define special actions on quasi-median graphs, and we show that a group which acts specially on a quasi-median graph with finitely many orbits of vertices must embed as a virtual retract into a graph product of finite extensions of clique-stabilizers. In the second part of the article, we apply the theory to fundamental groups of some graphs of groups called right-angled graphs of groups.
The cusped hyperbolic n-orbifolds of minimal volume are well known for $n\leq 9$. Their fundamental groups are related to the Coxeter n-simplex groups $\Gamma _{n}$. In this work, we prove that $\Gamma _{n}$ has minimal growth rate among all non-cocompact Coxeter groups of finite covolume in $\textrm{Isom}\mathbb H^{n}$. In this way, we extend previous results of Floyd for $n=2$ and of Kellerhals for $n=3$, respectively. Our proof is a generalization of the methods developed together with Kellerhals for the cocompact case.
We investigate quantitative aspects of the locally embeddable into finite groups (LEF) property for subgroups of the topological full group of a two-sided minimal subshift over a finite alphabet, measured via the LEF growth function. We show that the LEF growth of may be bounded from above and below in terms of the recurrence function and the complexity function of the subshift, respectively. As an application, we construct groups of previously unseen LEF growth types, and exhibit a continuum of finitely generated LEF groups which may be distinguished from one another by their LEF growth.
In this paper we give a complete description of the Bieri–Neumann–Strebel–Renz invariants of the Lodha–Moore groups. The second author previously computed the first two invariants, and here we show that all the higher invariants coincide with the second one, which finishes the complete computation. As a consequence, we present a complete picture of the finiteness properties of normal subgroups of the first Lodha–Moore group. In particular, we show that every finitely presented normal subgroup of the group is of type $\textrm{F}_\infty$, answering a question posed in Oberwolfach in 2018. The proof involves applying a variation of Bestvina–Brady discrete Morse theory to the so called cluster complex X introduced by the first author. As an application, we also demonstrate that a certain simple group S previously constructed by the first author is of type $\textrm{F}_\infty$. This provides the first example of a type $\textrm{F}_\infty$ simple group that acts faithfully on the circle by homeomorphisms, but does not admit any nontrivial action by $C^1$-diffeomorphisms, nor by piecewise linear homeomorphisms, on any 1-manifold.
This is the second of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this second paper, we restrict our attention to non-spectrally degenerate random walks and we prove precise asymptotics of the probability $p_n(e,e)$ of going back to the origin at time $n$. We combine techniques adapted from thermodynamic formalism with the rough estimates of the Green function given by part I to show that $p_n(e,e)\sim CR^{-n}n^{-3/2}$, where $R$ is the inverse of the spectral radius of the random walk. This both generalizes results of Woess for free products and results of Gouëzel for hyperbolic groups.
The k-gonal models of random groups are defined as the quotients of free groups on n generators by cyclically reduced words of length k. As k tends to infinity, this model approaches the Gromov density model. In this paper, we show that for any fixed $d_0 \in (0, 1)$, if positive k-gonal random groups satisfy Property (T) with overwhelming probability for densities $d >d_0$, then so do jk-gonal random groups, for any $j \in \mathbb{N}$. In particular, this shows that for densities above 1/3, groups in 3k-gonal models satisfy Property (T) with probability 1 as n approaches infinity.
In this paper, we consider the $T$- and $V$-versions, ${T_\tau }$ and ${V_\tau }$, of the irrational slope Thompson group ${F_\tau }$ considered in J. Burillo, B. Nucinkis and L. Reeves [An irrational-slope Thompson's group, Publ. Mat. 65 (2021), 809–839]. We give infinite presentations for these groups and show how they can be represented by tree-pair diagrams similar to those for $T$ and $V$. We also show that ${T_\tau }$ and ${V_\tau }$ have index-$2$ normal subgroups, unlike their original Thompson counterparts $T$ and $V$. These index-$2$ subgroups are shown to be simple.
We show continuity under equivariant Gromov–Hausdorff convergence of the critical exponent of discrete, non-elementary, torsion-free, quasiconvex-cocompact groups with uniformly bounded codiameter acting on uniformly Gromov-hyperbolic metric spaces.
A group is $\frac 32$-generated if every non-trivial element is part of a generating pair. In 2019, Donoven and Harper showed that many Thompson groups are $\frac 32$-generated and posed five questions. The first of these is whether there exists a 2-generated group with every proper quotient cyclic that is not $\frac 32$-generated. This is a natural question given the significant work in proving that no finite group has this property, but we show that there is such an infinite group. The groups we consider are a family of finite index subgroups $G_1,\, G_2,\, \ldots$ of the Houghton group $\operatorname {FSym}(\mathbb {Z})\rtimes \mathbb {Z}$. We then show that $G_1$ and $G_2$ are $\frac 32$-generated and investigate the related notion of spread for these groups. We are able to show that they have finite spread at least 2. These are, therefore, the first infinite groups to be shown to have finite positive spread, and the first to be shown to have spread at least 2 (other than $\mathbb {Z}$ and the Tarski monsters, which have infinite spread). As a consequence, for each $k\in \{2,\, 3,\, \ldots \}$, we also have that $G_{2k}$ is index $k$ in $G_2$ but $G_2$ is $\frac 32$-generated whereas $G_{2k}$ is not.
In this paper we consider two piecewise Riemannian metrics defined on the Culler–Vogtmann outer space which we call the entropy metric and the pressure metric. As a result of work of McMullen, these metrics can be seen as analogs of the Weil–Petersson metric on the Teichmüller space of a closed surface. We show that while the geometric analysis of these metrics is similar to that of the Weil–Petersson metric, from the point of view of geometric group theory, these metrics behave very differently than the Weil–Petersson metric. Specifically, we show that when the rank r is at least 4, the action of $\operatorname {\mathrm {Out}}(\mathbb {F}_r)$ on the completion of the Culler–Vogtmann outer space using the entropy metric has a fixed point. A similar statement also holds for the pressure metric.
We show that the automorphism groups of right-angled Artin groups whose defining graphs have at least three vertices are not relatively hyperbolic. We then show that the outer automorphism groups are also not relatively hyperbolic, except for a few exceptional cases. In these cases, the outer automorphism groups are virtually isomorphic to either a finite group, an infinite cyclic group or $\mathrm {GL}_2(\mathbb {Z})$.
We show that if G is an amenable group and H is a hyperbolic group, then the free product $G\ast H$ is weakly amenable. A key ingredient in the proof is the fact that $G\ast H$ is orbit equivalent to $\mathbb{Z}\ast H$.
Given groups $A$ and $B$, what is the minimal commutator length of the 2020th (for instance) power of an element $g\in A*B$ not conjugate to elements of the free factors? The exhaustive answer to this question is still unknown, but we can give an almost answer: this minimum is one of two numbers (simply depending on $A$ and $B$). Other similar problems are also considered.
We study the free metabelian group $M(2,n)$ of prime power exponent n on two generators by means of invariants $M(2,n)'\to \mathbb {Z}_n$ that we construct from colorings of the squares in the integer grid $\mathbb {R} \times \mathbb {Z} \cup \mathbb {Z} \times \mathbb {R}$. In particular, we improve bounds found by Newman for the order of $M(2,2^k)$. We study identities in $M(2,n)$, which give information about identities in the Burnside group $B(2,n)$ and the restricted Burnside group $R(2,n)$.
We study the number of ways of factoring elements in the complex reflection groups$G(r,s,n)$ as products of reflections. We prove a result that compares factorization numbers in$G(r,s,n)$ to those in the symmetric group$S_n$, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in$G(r,s,n)$.
Let $m\leqslant n\in \mathbb {N}$, and $G\leqslant \operatorname {Sym}(m)$ and $H\leqslant \operatorname {Sym}(n)$. In this article, we find conditions enabling embeddings between the symmetric R. Thompson groups ${V_m(G)}$ and ${V_n(H)}$. When $n\equiv 1 \mod (m-1)$, and under some other technical conditions, we find an embedding of ${V_n(H)}$ into ${V_m(G)}$ via topological conjugation. With the same modular condition, we also generalize a purely algebraic construction of Birget from 2019 to find a group $H\leqslant \operatorname {Sym}(n)$ and an embedding of ${V_m(G)}$ into ${V_n(H)}$.
Given an integer $g>2$, we state necessary and sufficient conditions for a finite Abelian group to act as a group of automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable Riemann surfaces.
In a seminal paper, Stallings introduced folding of morphisms of graphs. One consequence of folding is the representation of finitely-generated subgroups of a finite-rank free group as immersions of finite graphs. Stallings’s methods allow one to construct this representation algorithmically, giving effective, algorithmic answers and proofs to classical questions about subgroups of free groups. Recently Dani–Levcovitz used Stallings-like methods to study subgroups of right-angled Coxeter groups, which act geometrically on CAT(0) cube complexes. In this paper we extend their techniques to fundamental groups of non-positively curved cube complexes.
We prove that a minimal second countable ample groupoid has dynamical comparison if and only if its type semigroup is almost unperforated. Moreover, we investigate to what extent a not necessarily minimal almost finite groupoid has an almost unperforated type semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant property for metric spaces, which might be of independent interest in coarse geometry. As a consequence, we are able to construct new examples of almost finite principal groupoids lacking other desirable properties, such as amenability or even a-T-menability. This behaviour is in stark contrast to the case of principal transformation groupoids associated to group actions.
For a Coxeter system and a representation $V$ of this Coxeter system, Soergel defined a category which is now called the category of Soergel bimodules and proved that this gives a categorification of the Hecke algebra when $V$ is reflection faithful. Elias and Williamson defined another category when $V$ is not reflection faithful and proved that this category is equivalent to the category of Soergel bimodules when $V$ is reflection faithful. Moreover, they proved the categorification theorem for their category with fewer assumptions on $V$. In this paper, we give a bimodule description of the Elias–Williamson category and re-prove the categorification theorem.