We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the following decision problem: given an exponential equation $a_1g_1^{x_1}a_2g_2^{x_2}\dots a_ng_n^{x_n}=1$ over a recursively presented group G, decide if it has a solution with all $x_i$ in $\mathbb {Z}$. We construct a finitely presented group G where this problem is decidable for equations with one variable and is undecidable for equations with two variables. We also study functions estimating possible solutions of such an equation through the lengths of its coefficients with respect to a given generating set of G. Another result concerns Turing degrees of some natural fragments of the above problem.
We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar statement is proven for Coxeter groups.
We show that any set of distinct homotopy classes of simple closed curves on the torus that pairwise intersect at most k times has size
$k+O(\sqrt k \log k)$
. Prior to this work, a lemma of Agol, together with the state of the art bounds for the size of prime gaps, implied the error term
$O(k^{21/40})$
, and in fact the assumption of the Riemann hypothesis improved this error term to the one we obtain
$O(\sqrt k\log k)$
. By contrast, our methods are elementary, combinatorial, and geometric.
The higher-dimensional Thompson groups $nV$, for $n \geqslant 2$, were introduced by Brin [‘Presentations of higher dimensional Thompson groups’, J. Algebra284 (2005), 520–558]. We provide new presentations for each of these infinite simple groups. The first is an infinite presentation, analogous to the Coxeter presentation for the finite symmetric group, with generating set equal to the set of transpositions in $nV$ and reflecting the self-similar structure of n-dimensional Cantor space. We then exploit this infinite presentation to produce further finite presentations that are considerably smaller than those previously known.
The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).
We establish central limit theorems for an action of a group $G$ on a hyperbolic space $X$ with respect to the counting measure on a Cayley graph of $G$. Our techniques allow us to remove the usual assumptions of properness and smoothness of the space, or cocompactness of the action. We provide several applications which require our general framework, including to lengths of geodesics in geometrically finite manifolds and to intersection numbers with submanifolds.
If G is a group with subgroup H and m, k are two fixed nonnegative integers, H is called an
$(m,k)$
-subnormal subgroup of G if it has index at most m in a subnormal subgroup of G of defect less than or equal to k. We study the behaviour of uncountable groups of cardinality
$\aleph $
where all subgroups of cardinality
$\aleph $
are
$(m,k)$
-subnormal.
We show that the geometric realisation of the poset of proper parabolic subgroups of a large-type Artin group has a systolic geometry. We use this geometry to show that the set of parabolic subgroups of a large-type Artin group is stable under arbitrary intersections and forms a lattice for the inclusion. As an application, we show that parabolic subgroups of large-type Artin groups are stable under taking roots and we completely characterise the parabolic subgroups that are conjugacy stable.
We also use this geometric perspective to recover and unify results describing the normalisers of parabolic subgroups of large-type Artin groups.
How many 2-cells must two finite CW-complexes have to admit a common, but not finite common, covering? Leighton’s theorem says that both complexes must have 2-cells. We construct an almost (?) minimal example with two 2-cells in each complex.
This paper gives a description of the full space of Bridgeland stability conditions on the bounded derived category of a contraction algebra associated to a
$3$
-fold flop. The main result is that the stability manifold is the universal cover of a naturally associated hyperplane arrangement, which is known to be simplicial and in special cases is an ADE root system. There are four main corollaries: (1) a short proof of the faithfulness of pure braid group actions in both algebraic and geometric settings, the first that avoid normal forms; (2) a classification of tilting complexes in the derived category of a contraction algebra; (3) contractibility of the stability space associated to the flop; and (4) a new proof of the
$K(\unicode{x3c0} \,,1)$
-theorem in various finite settings, which includes ADE braid groups.
The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
In this note, we give a classification of the maximal order Abelian subgroups of finite irreducible Coxeter groups. We also prove a Weyl group analog of Cartan’s theorem that all maximal tori in a connected compact Lie group are conjugate.
A group is called quasihamiltonian if all its subgroups are permutable, and we say that a subgroup Q of a group G is permutably embedded in G if
$\langle Q,g\rangle $
is quasihamiltonian for each element g of G. It is proved here that if a group G contains a permutably embedded normal subgroup Q such that
$G/Q$
is Černikov, then G has a quasihamiltonian subgroup of finite index; moreover, if G is periodic, then it contains a Černikov normal subgroup N such that
$G/N$
is quasihamiltonian. This result should be compared with theorems of Černikov and Schlette stating that if a group G is Černikov over its centre, then G is abelian-by-finite and its commutator subgroup is Černikov.
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of
$n+2$
mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The
$E_7$
,
$E_8$
and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.
We show via
$\ell^2$
-homology that the rational homological dimension of a lattice in a product of simple simply connected Chevalley groups over global function fields is equal to the rational cohomological dimension and to the dimension of the associated Bruhat–Tits building.
The automorphism group $\operatorname {Aut}(F_n)$ of the free group $F_n$ acts on a space $A_d(n)$ of Jacobi diagrams of degree d on n oriented arcs. We study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$ by using two actions on the associated graded vector space of $A_d(n)$: an action of the general linear group $\operatorname {GL}(n,\mathbb {Z})$ and an action of the graded Lie algebra $\mathrm {gr}(\operatorname {IA}(n))$ of the IA-automorphism group $\operatorname {IA}(n)$ of $F_n$ associated with its lower central series. We extend the action of $\mathrm {gr}(\operatorname {IA}(n))$ to an action of the associated graded Lie algebra of the Andreadakis filtration of the endomorphism monoid of $F_n$. By using this action, we study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$. We obtain an indecomposable decomposition of $A_d(n)$ as $\operatorname {Aut}(F_n)$-modules for $n\geq 2d$. Moreover, we obtain the radical filtration of $A_d(n)$ for $n\geq 2d$ and the socle of $A_3(n)$.
From any two median spaces $X$ and $Y$, we construct a new median space $X \circledast Y$, referred to as the diadem product of $X$ and $Y$, and we show that this construction is compatible with wreath products in the following sense: given two finitely generated groups $G,\,H$ and two (equivariant) coarse embeddings into median spaces $X,\,Y$, there exist a(n equivariant) coarse embedding $G\wr H \to X \circledast Y$. The construction offers a unified point of view on various questions related to the Hilbertian geometry of wreath products of groups.