To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article studies the properties of word-hyperbolic semigroups and monoids, that is, those having context-free multiplication tables with respect to a regular combing, as defined by Duncan and Gilman [‘Word hyperbolic semigroups’, Math. Proc. Cambridge Philos. Soc.136(3) (2004), 513–524]. In particular, the preservation of word-hyperbolicity under taking free products is considered. Under mild conditions on the semigroups involved, satisfied, for example, by monoids or regular semigroups, we prove that the semigroup free product of two word-hyperbolic semigroups is again word-hyperbolic. Analogously, with a mild condition on the uniqueness of representation for the identity element, satisfied, for example, by groups, we prove that the monoid free product of two word-hyperbolic monoids is word-hyperbolic. The methods are language-theoretically general, and apply equally well to semigroups, monoids or groups with a $\mathbf {C}$-multiplication table, where $\mathbf {C}$ is any reversal-closed super-$\operatorname {\mathrm {AFL}}$. In particular, we deduce that the free product of two groups with $\mathbf {ET0L}$ with respect to indexed multiplication tables again has an $\mathbf {ET0L}$ with respect to an indexed multiplication table.
We introduce “braided” versions of self-similar groups and Röver–Nekrashevych groups, and study their finiteness properties. This generalizes work of Aroca and Cumplido, and the first author and Wu, who considered the case when the self-similar groups are what we call “self-identical.” In particular, we use a braided version of the Grigorchuk group to construct a new group called the “braided Röver group,” which we prove is of type $\operatorname {\mathrm {F}}_\infty $. Our techniques involve using so-called d-ary cloning systems to construct the groups, and analyzing certain complexes of embedded disks in a surface to understand their finiteness properties.
Consider Bernoulli bond percolation on a graph nicely embedded in hyperbolic space $\mathbb{H}^d$ in such a way that it admits a transitive action by isometries of $\mathbb{H}^d$. Let $p_{\text{a}}$ be the supremum of all percolation parameters such that no point at infinity of $\mathbb{H}^d$ lies in the boundary of the cluster of a fixed vertex with positive probability. Then for any parameter $p < p_{\text{a}}$, almost surely every percolation cluster is thin-ended, i.e. has only one-point boundaries of ends.
We present a quantitative isolation property of the lifts of properly immersed geodesic planes in the frame bundle of a geometrically finite hyperbolic $3$-manifold. Our estimates are polynomials in the tight areas and Bowen–Margulis–Sullivan densities of geodesic planes, with degree given by the modified critical exponents.
A generating set S for a group G is independent if the subgroup generated by $S\setminus \{s\}$ is properly contained in G for all $s \in S.$ We describe the structure of finite groups G such that there are precisely two numbers appearing as the cardinalities of independent generating sets for G.
We develop a method based on the Burau matrix to detect conditions on the linking numbers of braid strands. Our main application is to iterated exchanged braids. Unless the braid permutation fixes both braid edge strands, we establish under some fairly generic conditions on the linking numbers a ‘subsymmetry’ property; in particular at most two such braids can be mutually conjugate. As an addition, we prove that the Burau kernel is contained in the commutator subgroup of the pure braid group. We discuss also some properties of the Burau image.
We initiate the study of outer automorphism groups of special groups $G$, in the Haglund–Wise sense. We show that $\operatorname {Out}(G)$ is infinite if and only if $G$ splits over a co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn twist’. Similarly, the coarse-median preserving subgroup $\operatorname {Out}_{\rm cmp}(G)$ is infinite if and only if $G$ splits over an actual centraliser and there exists an infinite-order coarse-median-preserving generalised Dehn twist. The proof is based on constructing and analysing non-small, stable $G$-actions on $\mathbb {R}$-trees whose arc-stabilisers are centralisers or closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers, and thus are large subgroups of $G$. As a result of independent interest, we determine when generalised Dehn twists associated to splittings of $G$ preserve the coarse median structure.
We calculate asymptotic estimates for the conjugacy growth function of finitely generated class 2 nilpotent groups whose derived subgroups are infinite cyclic, including the so-called higher Heisenberg groups. We prove that these asymptotics are stable when passing to commensurable groups, by understanding their twisted conjugacy growth. We also use these estimates to prove that, in certain cases, the conjugacy growth series cannot be a holonomic function.
We give technical conditions for a quasi-isometry of pairs to preserve a subgroup being hyperbolically embedded. We consider applications to the quasi-isometry and commensurability invariance of acylindrical hyperbolicity of finitely generated groups.
Given a finitely generated free group $ {\mathbb {F} }$ of $\mathsf {rank}( {\mathbb {F} } )\geq 3$, we show that the mapping torus of $\phi$ is (strongly) relatively hyperbolic if $\phi$ is exponentially growing. As a corollary of our work, we give a new proof of Brinkmann's theorem which proves that the mapping torus of an atoroidal outer automorphism is hyperbolic. We also give a new proof of the Bridson–Groves theorem that the mapping torus of a free group automorphism satisfies the quadratic isoperimetric inequality. Our work also solves a problem posed by Minasyan and Osin: the mapping torus of an outer automorphism is not virtually acylindrically hyperbolic if and only if $\phi$ has finite order.
In his 1985 paper, Sullivan sketched a proof of his structural stability theorem for differentiable group actions satisfying certain expansion-hyperbolicity axioms. In this paper, we relax Sullivan’s axioms and introduce a notion of meandering hyperbolicity for group actions on geodesic metric spaces. This generalization is substantial enough to encompass actions of certain nonhyperbolic groups, such as actions of uniform lattices in semisimple Lie groups on flag manifolds. At the same time, our notion is sufficiently robust, and we prove that meandering-hyperbolic actions are still structurally stable. We also prove some basic results on meandering-hyperbolic actions and give other examples of such actions.
A group is said to have rational growth with respect to a generating set if the growth series is a rational function. It was shown by Parry that certain torus bundle groups of even trace exhibits rational growth. We generalize this result to a class of torus bundle groups with odd trace.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
We study the following decision problem: given an exponential equation $a_1g_1^{x_1}a_2g_2^{x_2}\dots a_ng_n^{x_n}=1$ over a recursively presented group G, decide if it has a solution with all $x_i$ in $\mathbb {Z}$. We construct a finitely presented group G where this problem is decidable for equations with one variable and is undecidable for equations with two variables. We also study functions estimating possible solutions of such an equation through the lengths of its coefficients with respect to a given generating set of G. Another result concerns Turing degrees of some natural fragments of the above problem.
We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar statement is proven for Coxeter groups.
We show that any set of distinct homotopy classes of simple closed curves on the torus that pairwise intersect at most k times has size $k+O(\sqrt k \log k)$. Prior to this work, a lemma of Agol, together with the state of the art bounds for the size of prime gaps, implied the error term $O(k^{21/40})$, and in fact the assumption of the Riemann hypothesis improved this error term to the one we obtain $O(\sqrt k\log k)$. By contrast, our methods are elementary, combinatorial, and geometric.
The higher-dimensional Thompson groups $nV$, for $n \geqslant 2$, were introduced by Brin [‘Presentations of higher dimensional Thompson groups’, J. Algebra284 (2005), 520–558]. We provide new presentations for each of these infinite simple groups. The first is an infinite presentation, analogous to the Coxeter presentation for the finite symmetric group, with generating set equal to the set of transpositions in $nV$ and reflecting the self-similar structure of n-dimensional Cantor space. We then exploit this infinite presentation to produce further finite presentations that are considerably smaller than those previously known.
The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).