We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The complete classification of the finite simple groups that are $(2,3)$-generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$-generators for the finite odd-dimensional orthogonal groups $\Omega _{2k+1}(q)$, $k\geq 4$. As a byproduct, we also obtain $(2,3)$-generators for $\Omega _{4k}^+(q)$ with $k\geq 3$ and q odd, and for $\Omega _{4k+2}^\pm (q)$ with $k\geq 4$ and $q\equiv \pm 1~ \mathrm {(mod~ 4)}$.
We initiate a systematic study of the perfection of affine group schemes of finite type over fields of positive characteristic. The main result intrinsically characterises and classifies the perfections of reductive groups and obtains a bijection with the set of classifying spaces of compact connected Lie groups topologically localised away from the characteristic. We also study the representations of perfectly reductive groups. We establish a highest weight classification of simple modules, the decomposition into blocks, and relate extension groups to those of the underlying abstract group.
We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational ${\mathbb R}$-tree T. We also show that T admits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.
Given an affine Coxeter group W, the corresponding Shi arrangement is a refinement of the corresponding Coxeter hyperplane arrangements that was introduced by Shi to study Kazhdan–Lusztig cells for W. Shi showed that each region of the Shi arrangement contains exactly one element of minimal length in W. Low elements in W were introduced to study the word problem of the corresponding Artin–Tits (braid) group and turns out to produce automata to study the combinatorics of reduced words in W. In this article, we show, in the case of an affine Coxeter group, that the set of minimal length elements of the regions in the Shi arrangement is precisely the set of low elements, settling a conjecture of Dyer and the second author in this case. As a by-product of our proof, we show that the descent walls – the walls that separate a region from the fundamental alcove – of any region in the Shi arrangement are precisely the descent walls of the alcove of its corresponding low element.
Every countable group G can be embedded in a finitely generated group $G^*$ that is hopfian and complete, that is, $G^*$ has trivial centre and every epimorphism $G^*\to G^*$ is an inner automorphism. Every finite subgroup of $G^*$ is conjugate to a finite subgroup of G. If G has a finite presentation (respectively, a finite classifying space), then so does $G^*$. Our construction of $G^*$ relies on the existence of closed hyperbolic 3-manifolds that are asymmetric and non-Haken.
In the previous paper, we defined a new category which categorifies the Hecke algebra. This is a generalization of the theory of Soergel bimodules. To prove theorems, the existences of certain homomorphisms between Bott–Samelson bimodules are assumed. In this paper, we prove this assumption. We only assume the vanishing of certain two-colored quantum binomial coefficients.
The algebraic mapping torus $M_{\Phi }$ of a group $G$ with an automorphism $\Phi$ is the HNN-extension of $G$ in which conjugation by the stable letter performs $\Phi$. We classify the Dehn functions of $M_{\Phi }$ in terms of $\Phi$ for a number of right-angled Artin groups (RAAGs) $G$, including all $3$-generator RAAGs and $F_k \times F_l$ for all $k,l \geq 2$.
Given a group $G$ and an integer $n\geq 0$, we consider the family ${\mathcal F}_n$ of all virtually abelian subgroups of $G$ of $\textrm{rank}$ at most $n$. In this article, we prove that for each $n\ge 2$ the Bredon cohomology, with respect to the family ${\mathcal F}_n$, of a free abelian group with $\textrm{rank}$$k \gt n$ is nontrivial in dimension $k+n$; this answers a question of Corob Cook et al. (Homology Homotopy Appl. 19(2) (2017), 83–87, Question 2.7). As an application, we compute the minimal dimension of a classifying space for the family ${\mathcal F}_n$ for braid groups, right-angled Artin groups, and graphs of groups whose vertex groups are infinite finitely generated virtually abelian groups, for all $n\ge 2$. The main tools that we use are the Mayer–Vietoris sequence for Bredon cohomology, Bass–Serre theory, and the Lück–Weiermann construction.
We prove that, given a finitely generated subgroup H of a free group F, the following questions are decidable: is H closed (dense) in F for the pro-(met)abelian topology? Is the closure of H in F for the pro-(met)abelian topology finitely generated? We show also that if the latter question has a positive answer, then we can effectively construct a basis for the closure, and the closure has decidable membership problem in any case. Moreover, it is decidable whether H is closed for the pro-$\mathbf {V}$ topology when $\mathbf {V}$ is an equational pseudovariety of finite groups, such as the pseudovariety $\mathbf {S}_k$ of all finite solvable groups with derived length $\leq k$. We also connect the pro-abelian topology with the topologies defined by abelian groups of bounded exponent.
Graph products of cyclic groups and Coxeter groups are two families of groups that are defined by labelled graphs. The family of Dyer groups contains these both families and gives us a framework to study these groups in a unified way. This paper focuses on the spherical growth series of a Dyer group D with respect to the standard generating set. We give a recursive formula for the spherical growth series of D in terms of the spherical growth series of standard parabolic subgroups. As an application we obtain the rationality of the spherical growth series of a Dyer group. Furthermore, we show that the spherical growth series of D is closely related to the Euler characteristic of D.
For a post-critically finite branched covering of the sphere that is a subdivision map of a finite subdivision rule, we define non-expanding spines which determine the existence of a Levy cycle in a non-exhaustive semi-decidable algorithm. Especially when a finite subdivision rule has polynomial growth of edge subdivisions, the algorithm terminates very quickly, and the existence of a Levy cycle is equivalent to the existence of a Thurston obstruction. To show the equivalence between Levy and Thurston obstructions, we generalize the arcs intersecting obstruction theorem by Pilgrim and Tan [Combining rational maps and controlling obstructions. Ergod. Th. & Dynam. Sys.18(1) (1998), 221–245] to a graph intersecting obstruction theorem. As a corollary, we prove that for a pair of post-critically finite polynomials, if at least one polynomial has core entropy zero, then their mating has a Levy cycle if and only if the mating has a Thurston obstruction.
We study conjugacy classes of germs of nonflat diffeomorphisms of the real line fixing the origin. Based on the work of Takens and Yoccoz, we establish results that are sharp in terms of differentiability classes and order of tangency to the identity. The core of all of this lies in the invariance of residues under low-regular conjugacies. This may be seen as an extension of the fact (also proved in this article) that the value of the Schwarzian derivative at the origin for germs of $C^3$ parabolic diffeomorphisms is invariant under $C^2$ parabolic conjugacy, though it may vary arbitrarily under parabolic $C^1$ conjugacy.
We investigate the groups of units of one-relator and special inverse monoids. These are inverse monoids which are defined by presentations, where all the defining relations are of the form $r=1$. We develop new approaches for finding presentations for the group of units of a special inverse monoid, and apply these methods to give conditions under which the group admits a presentation with the same number of defining relations as the monoid. In particular, our results give sufficient conditions for the group of units of a one-relator inverse monoid to be a one-relator group. When these conditions are satisfied, these results give inverse semigroup theoretic analogues of classical results of Adjan for one-relator monoids, and Makanin for special monoids. In contrast, we show that in general these classical results do not hold for one-relator and special inverse monoids. In particular, we show that there exists a one-relator special inverse monoid whose group of units is not a one-relator group (with respect to any generating set), and we show that there exists a finitely presented special inverse monoid whose group of units is not finitely presented.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
A prefix monoid is a finitely generated submonoid of a finitely presented group generated by the prefixes of its defining relators. Important results of Guba (1997), and of Ivanov, Margolis and Meakin (2001), show how the word problem for certain one-relator monoids, and inverse monoids, can be reduced to solving the membership problem in prefix monoids of certain one-relator groups. Motivated by this, in this paper, we study the class of prefix monoids of finitely presented groups. We obtain a complete description of this class of monoids. All monoids in this family are finitely generated, recursively presented and group-embeddable. Our results show that not every finitely generated recursively presented group-embeddable monoid is a prefix monoid, but for every such monoid, if we take a free product with a suitably chosen free monoid of finite rank, then we do obtain a prefix monoid. Conversely, we prove that every prefix monoid arises in this way. Also, we show that the groups that arise as groups of units of prefix monoids are precisely the finitely generated recursively presented groups, whereas the groups that arise as Schützenberger groups of prefix monoids are exactly the recursively enumerable subgroups of finitely presented groups. We obtain an analogous result classifying the Schützenberger groups of monoids of right units of special inverse monoids. We also give some examples of right cancellative monoids arising as monoids of right units of finitely presented special inverse monoids, and we show that not all right cancellative recursively presented monoids belong to this class.
We show that a certain category of bimodules over a finite-dimensional quiver algebra known as a type B zigzag algebra is a quotient category of the category of type B Soergel bimodules. This leads to an alternate proof of Rouquier’s conjecture on the faithfulness of the 2-braid groups for type B.
We show that there is a distortion element in a finitely generated subgroup G of the automorphism group of the full shift, namely an element of infinite order whose word norm grows polylogarithmically. As a corollary, we obtain a lower bound on the entropy dimension of any subshift containing a copy of G, and that a sofic shift’s automorphism group contains a distortion element if and only if the sofic shift is uncountable. We obtain also that groups of Turing machines and the higher-dimensional Brin–Thompson groups $mV$ admit distortion elements; in particular, $2V$ (unlike V) does not admit a proper action on a CAT$(0)$ cube complex. In each case, the distortion element roughly corresponds to the SMART machine of Cassaigne, Ollinger, and Torres-Avilés [A small minimal aperiodic reversible Turing machine. J. Comput. System Sci.84 (2017), 288–301].
Several finite complex reflection groups have a braid group that is isomorphic to a torus knot group. The reflection group is obtained from the torus knot group by declaring meridians to have order k for some $k\geq 2$, and meridians are mapped to reflections. We study all possible quotients of torus knot groups obtained by requiring meridians to have finite order. Using the theory of J-groups of Achar and Aubert [‘On rank 2 complex reflection groups’, Comm. Algebra36(6) (2008), 2092–2132], we show that these groups behave like (in general, infinite) complex reflection groups of rank two. The large family of ‘toric reflection groups’ that we obtain includes, among others, all finite complex reflection groups of rank two with a single conjugacy class of reflecting hyperplanes, as well as Coxeter’s truncations of the $3$-strand braid group. We classify these toric reflection groups and explain why the corresponding torus knot group can be naturally considered as its braid group. In particular, this yields a new infinite family of reflection-like groups admitting braid groups that are Garside groups. Moreover, we show that a toric reflection group has cyclic center by showing that the quotient by the center is isomorphic to the alternating subgroup of a Coxeter group of rank three. To this end we use the fact that the center of the alternating subgroup of an irreducible, infinite Coxeter group of rank at least three is trivial. Several ingredients of the proofs are purely Coxeter-theoretic, and might be of independent interest.
We generalise some known results for limit groups over free groups and residually free groups to limit groups over Droms RAAGs and residually Droms RAAGs, respectively. We show that limit groups over Droms RAAGs are free-by-(torsion-free nilpotent). We prove that if S is a full subdirect product of type $FP_s(\mathbb{Q})$ of limit groups over Droms RAAGs with trivial center, then the projection of S to the direct product of any s of the limit groups over Droms RAAGs has finite index. Moreover, we compute the growth of homology groups and the volume gradients for limit groups over Droms RAAGs in any dimension and for finitely presented residually Droms RAAGs of type $FP_m$ in dimensions up to m. In particular, this gives the values of the analytic $L^2$-Betti numbers of these groups in the respective dimensions.