To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathbf {G}$ be a connected reductive algebraic group over an algebraically closed field $\Bbbk $ and ${\mathbf B}$ be a Borel subgroup of ${\mathbf G}$. In this paper, we completely determine the composition factors of the permutation module $\mathbb {F}[{\mathbf G}/{\mathbf B}]$ for any field $\mathbb {F}$.
The group of order-preserving automorphisms of a finitely generated Archimedean ordered group of rank $2$ is either infinite cyclic or trivial according as the ratio in $\mathbb {R}$ of the generators of the subgroup is or is not quadratic over $\mathbb {Q}.$ In the case of an Archimedean ordered group of rank $2$ that is not finitely generated, the group of order-preserving automorphisms is free abelian. Criteria determining the rank of this free abelian group are established.
Let $H\le F$ be two finitely generated free groups. Given $g\in F$, we study the ideal $\mathfrak I_g$ of equations for g with coefficients in H, i.e. the elements $w(x)\in H*\langle x\rangle$ such that $w(g)=1$ in F. The ideal $\mathfrak I_g$ is a normal subgroup of $H*\langle x\rangle$, and it’s possible to algorithmically compute a finite normal generating set for $\mathfrak I_g$; we give a description of one such algorithm, based on Stallings folding operations. We provide an algorithm to find an equation in w(x)\in$\mathfrak I_g$ with minimum degree, i.e. such that its cyclic reduction contains the minimum possible number of occurrences of x and x−1; this answers a question of A. Rosenmann and E. Ventura. More generally, we show how to algorithmically compute the set Dg of all integers d such that $\mathfrak I_g$ contains equations of degree d; we show that Dg coincides, up to a finite set, with either $\mathbb N$ or $2\mathbb N$. Finally, we provide examples to illustrate the techniques introduced in this paper. We discuss the case where ${\text{rank}}(H)=1$. We prove that both kinds of sets Dg can actually occur. We show that the equations of minimum possible degree aren’t in general enough to generate the whole ideal $\mathfrak I_g$ as a normal subgroup.
We show that when a finitely presented Bestvina–Brady group splits as an amalgamated product over a subgroup $H$, its defining graph contains an induced separating subgraph whose associated Bestvina–Brady group is contained in a conjugate of $H$.
Given a group G acting faithfully on a set S, we characterize precisely when the twisted Brin–Thompson group SVG is finitely presented. The answer is that SVG is finitely presented if and only if we have the following: G is finitely presented, the action of G on S has finitely many orbits of two-element subsets of S, and the stabilizer in G of any element of S is finitely generated. Since twisted Brin–Thompson groups are simple, a consequence is that any subgroup of a group admitting an action as above satisfies the Boone–Higman conjecture. In the course of proving this, we also establish a sufficient condition for a group acting cocompactly on a simply connected complex to be finitely presented, even if certain edge stabilizers are not finitely generated, which may be of independent interest.
Nilpotency concepts for skew braces are among the main tools with which we are nowadays classifying certain special solutions of the Yang–Baxter equation, a consistency equation that plays a relevant role in quantum statistical mechanics and in many areas of mathematics. In this context, two relevant questions have been raised in F. Cedó, A. Smoktunowicz and L. Vendramin (Skew left braces of nilpotent type. Proc. Lond. Math. Soc. (3) 118 (2019), 1367–1392) (see questions 2.34 and 2.35) concerning right- and central nilpotency. The aim of this short note is to give a negative answer to both questions: thus, we show that a finite strong-nil brace B need not be right-nilpotent. On a positive note, we show that there is one (and only one, by our examples) special case of the previous questions that actually holds. In fact, we show that if B is a skew brace of nilpotent type and $b\ \ast \ b=0$ for all $b\in B$, then B is centrally nilpotent.
To any free group automorphism, we associate a universal (cone of) limit tree(s) with three defining properties: first, the tree has a minimal isometric action of the free group with trivial arc stabilizers; second, there is a unique expanding dilation of the tree that represents the free group automorphism; and finally, the loxodromic elements are exactly the elements that weakly limit to dominating attracting laminations under forward iteration by the automorphism. So the action on the tree detects the automorphism’s dominating exponential dynamics.
As a corollary, our previously constructed limit pretree that detects the exponential dynamics is canonical. We also characterize all very small trees that admit an expanding homothety representing a given automorphism. In the appendix, we prove a variation of Feighn–Handel’s recognition theorem for atoroidal outer automorphisms.
We study the planar 3-colorablesubgroup $\mathcal{E}$ of Thompson’s group F and its even part ${\mathcal{E}_{\rm EVEN}}$. The latter is obtained by cutting $\mathcal{E}$ with a finite index subgroup of F isomorphic to F, namely the rectangular subgroup $K_{(2,2)}$. We show that the even part ${\mathcal{E}_{\rm EVEN}}$ of the planar 3-colorable subgroup admits a description in terms of stabilisers of suitable subsets of dyadic rationals. As a consequence ${\mathcal{E}_{\rm EVEN}}$ is closed in the sense of Golan and Sapir. We then study three quasi-regular representations associated with ${\mathcal{E}_{\rm EVEN}}$: two are shown to be irreducible and one to be reducible.
In this paper, we study random walks on groups that contain superlinear-divergent geodesics, in the line of thoughts of Goldsborough and Sisto. The existence of a superlinear-divergent geodesic is a quasi-isometry invariant which allows us to execute Gouëzel’s pivoting technique. We develop the theory of superlinear divergence and establish a central limit theorem for random walks on these groups.
We use a special tiling for the hyperbolic d-space $\mathbb {H}^d$ for $d=2,3,4$ to construct an (almost) explicit isomorphism between the Lipschitz-free space $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(P)\oplus \mathcal {F}(\mathcal {N})$, where P is a polytope in $\mathbb {R}^d$ and $\mathcal {N}$ a net in $\mathbb {H}^d$ coming from the tiling. This implies that the spaces $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(\mathbb {R}^d)\oplus \mathcal {F}(\mathcal {M})$ are isomorphic for every net $\mathcal {M}$ in $\mathbb {H}^d$. In particular, we obtain that, for $d=2,3,4$, $\mathcal {F}(\mathbb {H}^d)$ has a Schauder basis. Moreover, using a similar method, we also give an explicit isomorphism between $\mathrm {Lip}(\mathbb {H}^d)$ and $\mathrm {Lip}(\mathbb {R}^d)$.
We prove that the Center Conjecture passes to the Artin groups whose defining graphs are cones, if the conjecture holds for the Artin group defined on the set of the cone points. In particular, it holds for every Artin group whose defining graph has exactly one cone point.
We examine a cyclic order on the directed edges of a tree whose vertices have cyclically ordered links. We use it to show that a graph of groups with left-cyclically ordered vertex groups and convex left-ordered edge groups is left-cyclically orderable.
Using tools from computable analysis, we develop a notion of effectiveness for general dynamical systems as those group actions on arbitrary spaces that contain a computable representative in their topological conjugacy class. Most natural systems one can think of are effective in this sense, including some group rotations, affine actions on the torus and finitely presented algebraic actions. We show that for finitely generated and recursively presented groups, every effective dynamical system is the topological factor of a computable action on an effectively closed subset of the Cantor space. We then apply this result to extend the simulation results available in the literature beyond zero-dimensional spaces. In particular, we show that for a large class of groups, many of these natural actions are topological factors of subshifts of finite type.
We investigate when a group of the form $G\times \mathbb {Z}^m\ (m\geq 1)$ has the finitely generated fixed subgroup property of automorphisms ($\mathrm {FGFP_a}$), by using the BNS-invariant, and provide some partial answers and nontrivial examples.
We study actions of higher rank lattices $\Gamma <G$ on hyperbolic spaces and we show that all such actions satisfying mild properties come from the rank-one factors of G. In particular, all non-elementary isometric actions on an unbounded hyperbolic space are of this type.
We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group $\Gamma$ of a closed hyperbolic surface $\Sigma$ in $\textrm{PSL}(2,{\mathbb{R}})^n$. We identify the boundary with the sphere ${\mathbb{P}}(({\mathcal{ML}})^n)$, where $\mathcal{ML}$ is the space of measured geodesic laminations on $\Sigma$. In the case $n=2$, we give a geometric interpretation of the boundary as the space of homothety classes of ${\mathbb{R}}^2$-mixed structures on $\Sigma$. We associate to such a structure a dual tree-graded space endowed with an ${\mathbb{R}}_+^2$-valued metric, which we show to be universal with respect to actions on products of two $\mathbb{R}$-trees with the given length spectrum.
Let G be a torsion-free, finitely generated, nilpotent and metabelian group. In this work, we show that G embeds into the group of orientation-preserving $C^{1+\alpha }$-diffeomorphisms of the compact interval for all $\alpha < 1/k$, where k is the torsion-free rank of $G/A$ and A is a maximal abelian subgroup. We show that, in many situations, the corresponding $1/k$ is critical in the sense that there is no embedding of G with higher regularity. A particularly nice family where this happens is the family of $(2n+1)$-dimensional Heisenberg groups, for which we can show that the critical regularity is equal to $1+1/n$.
We introduce and study two conditions on groups of homeomorphisms of Cantor space, namely the conditions of being vigorous and of being flawless. These concepts are dynamical in nature, and allow us to study a certain interplay between the dynamics of an action and the algebraic properties of the acting group. A group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is vigorous if for any clopen set A and proper clopen subsets B and C of A, there is $\gamma \in G$ in the pointwise stabiliser of $\mathfrak {C}\backslash A$ with $B\gamma \subseteq C$. A nontrivial group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is flawless if for all k and w a nontrivial freely reduced product expression on k variables (including inverse symbols), a particular subgroup $w(G)_\circ $ of the verbal subgroup $w(G)$ is the whole group. We show: 1) simple vigorous groups are either two-generated by torsion elements, or not finitely generated, 2) flawless groups are both perfect and lawless, 3) vigorous groups are simple if and only if they are flawless, and, 4) the class of vigorous simple subgroups of $\operatorname {Homeo}(\mathfrak {C})$ is fairly broad (the class is closed under various natural constructions and contains many well known groups, such as the commutator subgroups of the Higman–Thompson groups $G_{n,r}$, the Brin-Thompson groups $nV$, Röver’s group $V(\Gamma )$, and others of Nekrashevych’s ‘simple groups of dynamical origin’).
Let G be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup $\Gamma <G$ with respect to a parabolic subgroup $P_\theta $, we prove that any $\Gamma $-Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $. More generally, we prove that for a Zariski dense $\theta $-transverse subgroup $\Gamma <G$, any $(\Gamma , \psi )$-Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $, provided the $\psi $-Poincaré series of $\Gamma $ diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.
This paper is the first of a two part series devoted to describing relations between congruence and crystallographic braid groups. We recall and introduce some elements belonging to congruence braid groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding quotients of congruence braid groups.