To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish central limit theorems for an action of a group $G$ on a hyperbolic space $X$ with respect to the counting measure on a Cayley graph of $G$. Our techniques allow us to remove the usual assumptions of properness and smoothness of the space, or cocompactness of the action. We provide several applications which require our general framework, including to lengths of geodesics in geometrically finite manifolds and to intersection numbers with submanifolds.
If G is a group with subgroup H and m, k are two fixed nonnegative integers, H is called an $(m,k)$-subnormal subgroup of G if it has index at most m in a subnormal subgroup of G of defect less than or equal to k. We study the behaviour of uncountable groups of cardinality $\aleph $ where all subgroups of cardinality $\aleph $ are $(m,k)$-subnormal.
We show that the geometric realisation of the poset of proper parabolic subgroups of a large-type Artin group has a systolic geometry. We use this geometry to show that the set of parabolic subgroups of a large-type Artin group is stable under arbitrary intersections and forms a lattice for the inclusion. As an application, we show that parabolic subgroups of large-type Artin groups are stable under taking roots and we completely characterise the parabolic subgroups that are conjugacy stable.
We also use this geometric perspective to recover and unify results describing the normalisers of parabolic subgroups of large-type Artin groups.
How many 2-cells must two finite CW-complexes have to admit a common, but not finite common, covering? Leighton’s theorem says that both complexes must have 2-cells. We construct an almost (?) minimal example with two 2-cells in each complex.
This paper gives a description of the full space of Bridgeland stability conditions on the bounded derived category of a contraction algebra associated to a $3$-fold flop. The main result is that the stability manifold is the universal cover of a naturally associated hyperplane arrangement, which is known to be simplicial and in special cases is an ADE root system. There are four main corollaries: (1) a short proof of the faithfulness of pure braid group actions in both algebraic and geometric settings, the first that avoid normal forms; (2) a classification of tilting complexes in the derived category of a contraction algebra; (3) contractibility of the stability space associated to the flop; and (4) a new proof of the $K(\unicode{x3c0} \,,1)$-theorem in various finite settings, which includes ADE braid groups.
The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
In this note, we give a classification of the maximal order Abelian subgroups of finite irreducible Coxeter groups. We also prove a Weyl group analog of Cartan’s theorem that all maximal tori in a connected compact Lie group are conjugate.
A group is called quasihamiltonian if all its subgroups are permutable, and we say that a subgroup Q of a group G is permutably embedded in G if $\langle Q,g\rangle $ is quasihamiltonian for each element g of G. It is proved here that if a group G contains a permutably embedded normal subgroup Q such that $G/Q$ is Černikov, then G has a quasihamiltonian subgroup of finite index; moreover, if G is periodic, then it contains a Černikov normal subgroup N such that $G/N$ is quasihamiltonian. This result should be compared with theorems of Černikov and Schlette stating that if a group G is Černikov over its centre, then G is abelian-by-finite and its commutator subgroup is Černikov.
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of $n+2$ mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The $E_7$, $E_8$ and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.
We show via $\ell^2$-homology that the rational homological dimension of a lattice in a product of simple simply connected Chevalley groups over global function fields is equal to the rational cohomological dimension and to the dimension of the associated Bruhat–Tits building.
The automorphism group $\operatorname {Aut}(F_n)$ of the free group $F_n$ acts on a space $A_d(n)$ of Jacobi diagrams of degree d on n oriented arcs. We study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$ by using two actions on the associated graded vector space of $A_d(n)$: an action of the general linear group $\operatorname {GL}(n,\mathbb {Z})$ and an action of the graded Lie algebra $\mathrm {gr}(\operatorname {IA}(n))$ of the IA-automorphism group $\operatorname {IA}(n)$ of $F_n$ associated with its lower central series. We extend the action of $\mathrm {gr}(\operatorname {IA}(n))$ to an action of the associated graded Lie algebra of the Andreadakis filtration of the endomorphism monoid of $F_n$. By using this action, we study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$. We obtain an indecomposable decomposition of $A_d(n)$ as $\operatorname {Aut}(F_n)$-modules for $n\geq 2d$. Moreover, we obtain the radical filtration of $A_d(n)$ for $n\geq 2d$ and the socle of $A_3(n)$.
From any two median spaces $X$ and $Y$, we construct a new median space $X \circledast Y$, referred to as the diadem product of $X$ and $Y$, and we show that this construction is compatible with wreath products in the following sense: given two finitely generated groups $G,\,H$ and two (equivariant) coarse embeddings into median spaces $X,\,Y$, there exist a(n equivariant) coarse embedding $G\wr H \to X \circledast Y$. The construction offers a unified point of view on various questions related to the Hilbertian geometry of wreath products of groups.
We characterize when a set of simple closed curves in an orientable surface forms a bouquet, in terms of relations between the corresponding Dehn twists.
We show that every isometric action on a Cantor set is conjugate to an inverse limit of actions on finite sets; and that every faithful isometric action by a finitely generated amenable group is residually finite.
We describe all groups that can be generated by two twists along spherical sequences in an enhanced triangulated category. It will be shown that with one exception such a group is isomorphic to an abelian group generated by not more than two elements, the free group on two generators or the braid group of one of the types $A_2$, $B_2$ and $G_2$ factorised by a central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear relation between length and sphericity holds. The mentioned exception can occur when one has two spherical sequences of length 3 and sphericity 2. In this case the group generated by the corresponding two spherical twists can be isomorphic to the nontrivial central extension of the symmetric group on three elements by the infinite cyclic group. Also we will apply this result to give a presentation of the derived Picard group of selfinjective algebras of the type $D_4$ with torsion 3 by generators and relations.
We initiate the study of C*-algebras and groupoids arising from left regular representations of Garside categories, a notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding C*-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher rank graph C*-algebras. As another application, we give a complete analysis of the ideal structures of C*-algebras generated by left regular representations of Artin–Tits monoids.
We prove that for any transitive subshift X with word complexity function $c_n(X)$, if $\liminf ({\log (c_n(X)/n)}/({\log \log \log n})) = 0$, then the quotient group ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ of the automorphism group of X by the subgroup generated by the shift $\sigma $ is locally finite. We prove that significantly weaker upper bounds on $c_n(X)$ imply the same conclusion if the gap conjecture from geometric group theory is true. Our proofs rely on a general upper bound for the number of automorphisms of X of range n in terms of word complexity, which may be of independent interest. As an application, we are also able to prove that for any subshift X, if ${c_n(X)}/{n^2 (\log n)^{-1}} \rightarrow 0$, then $\mathrm {Aut}(X,\sigma )$ is amenable, improving a result of Cyr and Kra. In the opposite direction, we show that for any countable infinite locally finite group G and any unbounded increasing $f: \mathbb {N} \rightarrow \mathbb {N}$, there exists a minimal subshift X with ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ isomorphic to G and ${c_n(X)}/{nf(n)} \rightarrow 0$.