We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a group G, we define a graph
$\Delta (G)$
by letting
$G^{\scriptsize\#}=G\setminus {\{\,1\,\}} $
be the set of vertices and by drawing an edge between distinct elements
$x,y\in G^{\scriptsize\#}$
if and only if the subgroup
$\langle x,y\rangle $
is cyclic. Recall that a Z-group is a group where every Sylow subgroup is cyclic. In this short note, we investigate
$\Delta (G)$
for a Z-group G.
It is conjectured that the central quotient of any irreducible Artin–Tits group is either virtually cyclic or acylindrically hyperbolic. We prove this conjecture for Artin–Tits groups that are known to be CAT(0) groups by a result of Brady and McCammond, that is, Artin–Tits groups associated with graphs having no 3-cycles and Artin–Tits groups of almost large type associated with graphs admitting appropriate directions. In particular, the latter family contains Artin–Tits groups of large type associated with cones over square-free bipartite graphs.
We consider the Newton stratification on Iwahori-double cosets in the loop group of a reductive group. We describe a group-theoretic condition on the generic Newton point, called cordiality, under which the Newton poset (that is, the index set for non-empty Newton strata) is saturated and Grothendieck’s conjecture on closures of the Newton strata holds. Finally, we give several large classes of Iwahori-double cosets for which this condition is satisfied by studying certain paths in the associated quantum Bruhat graph.
A right Engel sink of an element g of a group G is a set ${\mathscr R}(g)$ such that for every x ∈ G all sufficiently long commutators $[...[[g,x],x],\dots ,x]$ belong to ${\mathscr R}(g)$. (Thus, g is a right Engel element precisely when we can choose ${\mathscr R}(g)=\{ 1\}$.) It is proved that if every element of a compact (Hausdorff) group G has a countable right Engel sink, then G has a finite normal subgroup N such that G/N is locally nilpotent.
We show that for every non-elementary hyperbolic group the Bowen–Margulis current associated with a strongly hyperbolic metric forms a unique group-invariant Radon measure class of maximal Hausdorff dimension on the boundary square. Applications include a characterization of roughly similar hyperbolic metrics via mean distortion.
The main objective of this paper is the following two results. (1) There exists a computable bi-orderable group that does not have a computable bi-ordering; (2) there exists a bi-orderable, two-generated computably presented solvable group with undecidable word problem. Both of the groups can be found among two-generated solvable groups of derived length $3$.
(1) [a]nswers a question posed by Downey and Kurtz; (2) answers a question posed by Bludov and Glass in Kourovka Notebook.
One of the technical tools used to obtain the main results is a computational extension of an embedding theorem of B. Neumann that was studied by the author earlier. In this paper we also compliment that result and derive new corollaries that might be of independent interest.
We consider the graph
$\Gamma _{\text {virt}}(G)$
whose vertices are the elements of a finitely generated profinite group G and where two vertices x and y are adjacent if and only if they topologically generate an open subgroup of G. We investigate the connectivity of the graph
$\Delta _{\text {virt}}(G)$
obtained from
$\Gamma _{\text {virt}}(G)$
by removing its isolated vertices. In particular, we prove that for every positive integer t, there exists a finitely generated prosoluble group G with the property that
$\Delta _{\operatorname {\mathrm {virt}}}(G)$
has precisely t connected components. Moreover, we study the graph
$\widetilde \Gamma _{\operatorname {\mathrm {virt}}}(G)$
, whose vertices are again the elements of G and where two vertices are adjacent if and only if there exists a minimal generating set of G containing them. In this case, we prove that the subgraph
$\widetilde \Delta _{\operatorname {\mathrm {virt}}}(G)$
obtained removing the isolated vertices is connected and has diameter at most 3.
Let G be a nontrivial torsion-free group and $s\left( t \right) = {g_1}{t^{{\varepsilon _1}}}{g_2}{t^{{\varepsilon _2}}} \ldots {g_n}{t^{{\varepsilon _n}}} = 1\left( {{g_i} \in G,{\varepsilon_i} = \pm 1} \right)$ be an equation over G containing no blocks of the form ${t^{- 1}}{g_i}{t^{ - 1}},{g_i} \in G$. In this paper, we show that $s\left( t \right) = 1$ has a solution over G provided a single relation on coefficients of s(t) holds. We also generalize our results to equations containing higher powers of t. The later equations are also related to Kaplansky zero-divisor conjecture.
We examine 2-complexes $X$ with the property that for any compact connected $Y$, and immersion $Y\rightarrow X$, either $\unicode[STIX]{x1D712}(Y)\leqslant 0$ or $\unicode[STIX]{x1D70B}_{1}Y=1$. The mapping torus of an endomorphism of a free group has this property. Every irreducible 3-manifold with boundary has a spine with this property. We show that the fundamental group of any 2-complex with this property is locally indicable. We outline evidence supporting the conjecture that this property implies coherence. We connect the property to asphericity. Finally, we prove coherence for 2-complexes with a stricter form of this property. As a corollary, every one-relator group with torsion is coherent.
We shall define a general notion of dimension, and study groups and rings whose interpretable sets carry such a dimension. In particular, we deduce chain conditions for groups, definability results for fields and domains, and show that a pseudofinite
$\widetilde {\mathfrak M}_c$
-group of finite positive dimension contains a finite-by-abelian subgroup of positive dimension, and a pseudofinite group of dimension 2 contains a soluble subgroup of dimension 2.
It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
We show local rigidity of hyperbolic triangle groups generated by reflections in pairs of n-dimensional subspaces of
$\mathbb {R}^{2n}$
obtained by composition of the geometric representation in
$\mathsf {PGL}(2,\mathbb {R})$
with the diagonal embeddings into
$\mathsf {PGL}(2n,\mathbb {R})$
and
$\mathsf {PSp}^\pm (2n,\mathbb {R})$
.
According to Mazhuga’s theorem, the fundamental group H of anyconnected surface, possibly except for the Klein bottle, is a retract of each finitely generated group containing H as a verbally closed subgroup. We prove that the Klein bottle group is indeed an exception but has a very close property.
To every dynamical system $(X,\varphi )$ over a totally disconnected compact space, we associate a left-orderable group $T(\varphi )$. It is defined as a group of homeomorphisms of the suspension of $(X,\varphi )$ which preserve every orbit of the suspension flow and act by dyadic piecewise linear homeomorphisms in the flow direction. We show that if the system is minimal, the group is simple and, if it is a subshift, then the group is finitely generated. The proofs of these two statements are short and elementary, providing straightforward examples of finitely generated simple left-orderable groups. We show that if the system is minimal, every action of the corresponding group on the circle has a fixed point. These constitute the first examples of finitely generated left-orderable groups with this fixed point property. We show that for every system $(X,\varphi )$, the group $T(\varphi )$ does not have infinite subgroups with Kazhdan's property $(T)$. In addition, we show that for every minimal subshift, the corresponding group is never finitely presentable. Finally, if $(X,\varphi )$ has a dense orbit, then the isomorphism type of the group $T(\varphi )$ is a complete invariant of flow equivalence of the pair $\{\varphi , \varphi ^{-1}\}$.
For a finite group $G$, let $d(G)$ denote the minimal number of elements required to generate $G$. In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.
We consider the sequence of powers of a positive definite function on a discrete group. Taking inspiration from random walks on compact quantum groups, we give several examples of situations where a cut-off phenomenon occurs for this sequence, including free groups and infinite Coxeter groups. We also give examples of absence of cut-off using free groups again.
Diagrammatic reducibility DR and its generalization, vertex asphericity VA, are combinatorial tools developed for detecting asphericity of a 2-complex. Here we present tests for a relative version of VA that apply to pairs of 2-complexes
$(L,K)$
, where K is a subcomplex of L. We show that a relative weight test holds for injective labeled oriented trees, implying that they are VA and hence aspherical. This strengthens a result obtained by the authors in 2017 and simplifies the original proof.
Let $\unicode[STIX]{x1D6E4}$ denote the mapping class group of the plane minus a Cantor set. We show that every action of $\unicode[STIX]{x1D6E4}$ on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.
In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups. Invent. Math.170(2) (2007), 243–295]. Let $G$ be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let $H$ be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of $G$ with value in $H$ is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math.58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann.344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc.362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of $g$-genus surfaces with $p$-punches, $g\geq 2,p\geq 0$; Richard Thompson groups $F,T,V$; $\text{Aut}(F_{n})$, $\text{Out}(F_{n})$, $n\geq 3$; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann.368(3–4) (2017), 1109–1132].
For a finite group $G$, define $l(G)=(\prod _{g\in G}o(g))^{1/|G|}/|G|$, where $o(g)$ denotes the order of $g\in G$. We prove that if $l(G)>l(A_{5}),l(G)>l(A_{4}),l(G)>l(S_{3}),l(G)>l(Q_{8})$ or $l(G)>l(C_{2}\times C_{2})$, then $G$ is solvable, supersolvable, nilpotent, abelian or cyclic, respectively.