We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the virtual cohomological dimension of a Coxeter group is essentially the regularity of the Stanley–Reisner ring of its nerve. Using this connection between geometric group theory and commutative algebra, as well as techniques from the theory of hyperbolic Coxeter groups, we study the behavior of the Castelnuovo–Mumford regularity of square-free quadratic monomial ideals. We construct examples of such ideals which exhibit arbitrarily high regularity after linear syzygies for arbitrarily many steps. We give a doubly logarithmic bound on the regularity as a function of the number of variables if these ideals are Cohen–Macaulay.
We prove that for $n\geqslant 4$, every knot has infinitely many conjugacy classes of $n$-braid representatives if and only if it has one admitting an exchange move.
We classify all possible JSJ decompositions of doubles of free groups of rank two, and we also compute the Makanin–Razborov diagram of a particular double of a free group and deduce that in general limit groups are not freely subgroup separable.
We prove that every finitely-generated right-angled Artin group embeds into some Brin–Thompson group nV. It follows that any virtually special group can be embedded into some nV, a class that includes surface groups, all finitely-generated Coxeter groups, and many one-ended hyperbolic groups.
This paper concerns the study of the global structure of measure-preserving actions of countable groups on standard probability spaces. Weak containment is a hierarchical notion of complexity of such actions, motivated by an analogous concept in the theory of unitary representations. This concept gives rise to an associated notion of equivalence of actions, called weak equivalence, which is much coarser than the notion of isomorphism (conjugacy). It is well understood now that, in general, isomorphism is a very complex notion, a fact which manifests itself, for example, in the lack of any reasonable structure in the space of actions modulo isomorphism. On the other hand, the space of weak equivalence classes is quite well behaved. Another interesting fact that relates to the study of weak containment is that many important parameters associated with actions, such as the type, cost, and combinatorial parameters, turn out to be invariants of weak equivalence and in fact exhibit desirable monotonicity properties with respect to the pre-order of weak containment, a fact that can be useful in certain applications. There has been quite a lot of activity in this area in the last few years, and our goal in this paper is to provide a survey of this work.
A group G has restricted centralizers if for each g in G the centralizer $C_G(g)$ either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.
We study 2-generated subgroups $\langle f,g\rangle <\operatorname{Homeo}^{+}(I)$ such that $\langle f^{2},g^{2}\rangle$ is isomorphic to Thompson’s group $F$, and such that the supports of $f$ and $g$ form a chain of two intervals. We show that this class contains uncountably many isomorphism types. These include examples with non-abelian free subgroups, examples which do not admit faithful actions by $C^{2}$ diffeomorphisms on 1-manifolds, examples which do not admit faithful actions by $PL$ homeomorphisms on an interval, and examples which are not finitely presented. We thus answer questions due to Brin. We also show that many relatively uncomplicated groups of homeomorphisms can have very complicated square roots, thus establishing the behavior of square roots of $F$ as part of a general phenomenon among subgroups of $\operatorname{Homeo}^{+}(I)$.
We show that if a hyperbolic group acts geometrically on a CAT(0) cube complex, then the induced boundary action is hyperfinite. This means that for a cubulated hyperbolic group, the natural action on its Gromov boundary is hyperfinite, which generalizes an old result of Dougherty, Jackson and Kechris for the free group case.
The word $w=[x_{i_{1}},x_{i_{2}},\ldots ,x_{i_{k}}]$ is a simple commutator word if $k\geq 2,i_{1}\neq i_{2}$ and $i_{j}\in \{1,\ldots ,m\}$ for some $m>1$. For a finite group $G$, we prove that if $i_{1}\neq i_{j}$ for every $j\neq 1$, then the verbal subgroup corresponding to $w$ is nilpotent if and only if $|ab|=|a||b|$ for any $w$-values $a,b\in G$ of coprime orders. We also extend the result to a residually finite group $G$, provided that the set of all $w$-values in $G$ is finite.
Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with three distinct characteristic subgroups, namely 1, Gp and G. The quotient group G/Gp gives rise to an anti-commutative 𝔽p-algebra L such that the action of Aut (L) is irreducible on L; we call such an algebra IAC. This paper establishes a duality G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are semisimple and we classify the simple IAC algebras of dimension at most 4 over certain fields. We also give other examples of simple IAC algebras, including a family related to the m-th symmetric power of the natural module of SL(2, 𝔽).
In this paper we introduce and study the conjugacy ratio of a finitely generated group, which is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that the conjugacy ratio is 0 for all groups except the virtually abelian ones, and confirm this conjecture for certain residually finite groups of subexponential growth, hyperbolic groups, right-angled Artin groups and the lamplighter group.
Let G be a linear group such that for every g ∈ G there is a finite set ${\cal R}(g)$ with the property that for every x ∈ G all sufficiently long commutators [g, x, x, …, x] belong to ${\cal R}(g)$. We prove that G is finite-by-hypercentral.
We use a coarse version of the fundamental group first introduced by Barcelo, Kramer, Laubenbacher and Weaver to show that box spaces of finitely presented groups detect the normal subgroups used to construct the box space, up to isomorphism. As a consequence, we have that two finitely presented groups admit coarsely equivalent box spaces if and only if they are commensurable via normal subgroups. We also provide an example of two filtrations (Ni) and (Mi) of a free group F such that Mi > Ni for all i with [Mi:Ni] uniformly bounded, but with $\squ _{(N_i)}F$ not coarsely equivalent to $\squ _{(M_i)}F$. Finally, we give some applications of the main theorem for rank gradient and the first ℓ2 Betti number, and show that the main theorem can be used to construct infinitely many coarse equivalence classes of box spaces with various properties.
We define a natural lattice structure on all subsets of a finite root system that extends the weak order on the elements of the corresponding Coxeter group. For crystallographic root systems, we show that the subposet of this lattice induced by antisymmetric closed subsets of roots is again a lattice. We then study further subposets of this lattice that naturally correspond to the elements, the intervals, and the faces of the permutahedron and the generalized associahedra of the corresponding Weyl group. These results extend to arbitrary finite crystallographic root systems the recent results of G. Chatel, V. Pilaud, and V. Pons on the weak order on posets and its induced subposets.
We present a new test for studying asphericity and diagrammatic reducibility of group presentations. Our test can be applied to prove diagrammatic reducibility in cases where the classical weight test fails. We use this criterion to generalize results of J. Howie and S.M. Gersten on asphericity of LOTs and of Adian presentations, and derive new results on solvability of equations over groups. We also use our methods to investigate a conjecture of S.V. Ivanov related to Kaplansky's problem on zero divisors: we strengthen Ivanov's result for locally indicable groups and prove a weak version of the conjecture.
We construct a linear system nonlocal game which can be played perfectly using a limit of finite-dimensional quantum strategies, but which cannot be played perfectly on any finite-dimensional Hilbert space, or even with any tensor-product strategy. In particular, this shows that the set of (tensor-product) quantum correlations is not closed. The constructed nonlocal game provides another counterexample to the ‘middle’ Tsirelson problem, with a shorter proof than our previous paper (though at the loss of the universal embedding theorem). We also show that it is undecidable to determine if a linear system game can be played perfectly with a finite-dimensional strategy, or a limit of finite-dimensional quantum strategies.
This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of $W$ to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).
We study the geometry of infinitely presented groups satisfying the small cancellation condition $C^{\prime }(1/8)$, and introduce a standard decomposition (called the criss-cross decomposition) for the elements of such groups. Our method yields a direct construction of a linearly independent set of power continuum in the kernel of the comparison map between the bounded and the usual group cohomology in degree 2, without the use of free subgroups and extensions.
A space X is said to be Lipschitz 1-connected if every Lipschitz loop 𝛾 : S1 → X bounds a O (Lip(𝛾))-Lipschitz disk f : D2 → X. A Lipschitz 1-connected space admits a quadratic isoperimetric inequality, but it is unknown whether the converse is true. Cornulier and Tessera showed that certain solvable Lie groups have quadratic isoperimetric inequalities, and we extend their result to show that these groups are Lipschitz 1-connected.