To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subset $X$ of a group $G$ is a set of pairwise noncommuting elements if $ab\neq ba$ for any two distinct elements $a$ and $b$ in $X$. If $|X|\geq |Y|$ for any other set of pairwise noncommuting elements $Y$ in $G$, then $X$ is called a maximal subset of pairwise noncommuting elements and the cardinality of such a subset (if it exists) is denoted by ${\it\omega}(G)$. In this paper, among other things, we prove that, for each positive integer $n$, there are only finitely many groups $G$, up to isoclinism, with ${\it\omega}(G)=n$, and we obtain similar results for groups with exactly $n$ centralisers.
The subgroup commutativity degree of a group $G$ is the probability that two subgroups of $G$ commute, or equivalently that the product of two subgroups is again a subgroup. For the dihedral, quasi-dihedral and generalised quaternion groups (all of 2-power cardinality), the subgroup commutativity degree tends to 0 as the size of the group tends to infinity. This also holds for the family of projective special linear groups over fields of even characteristic and for the family of the simple Suzuki groups. In this short note, we show that the family of finite $P$-groups also has this property.
If the centre of a group $G$ is trivial, then so is the centre of its automorphism group. We study the structure of the centre of the automorphism group of a group $G$ when the centre of $G$ is a cyclic group. In particular, it is shown that the exponent of $Z(\text{Aut}(G))$ is less than or equal to the exponent of $Z(G)$ in this case.
Let $G$ be a finitely generated group acting on a compact Hausdorff space ${\mathcal{X}}$. We give a fixed point characterisation for the action being amenable. As a corollary, we obtain a fixed point characterisation for the exactness of $G$.
There exist infinite finitely presented torsion-free groups G such that Aut(G) and Out(G) are torsion free but G has an automorphism sending some non-trivial element to its inverse.
Hughes has defined a class of groups that we call finite similarity structure (FSS) groups. Each FSS group acts on a compact ultrametric space by local similarities. The best-known example is Thompson’s group V. Guided by previous work on Thompson’s group, we show that many FSS groups are of type F∞. This generalizes work of Ken Brown from the 1980s.
We present a computer algebra package based onMagma for performing computations in rational Cherednik algebras with arbitrary parameters and in Verma modules for restricted rational Cherednik algebras. Part of this package is a new general Las Vegas algorithm for computing the head and the constituents of a module with simple head in characteristic zero, which we develop here theoretically. This algorithm is very successful when applied to Verma modules for restricted rational Cherednik algebras and it allows us to answer several questions posed by Gordon in some specific cases. We can determine the decomposition matrices of the Verma modules, the graded $G$-module structure of the simple modules, and the Calogero–Moser families of the generic restricted rational Cherednik algebra for around half of the exceptional complex reflection groups. In this way we can also confirm Martino’s conjecture for several exceptional complex reflection groups.
We prove that the groups presented by finite convergent monadic rewriting systems with generators of finite order are exactly the free products of finitely many finite groups, thereby confirming Gilman’s conjecture in a special case. We also prove that the finite cyclic groups of order at least three are the only finite groups admitting a presentation by more than one finite convergent monadic rewriting system (up to relabelling), and these admit presentation by exactly two such rewriting systems.
Estimating numerically the spectral radius of a random walk on a non-amenable graph is complicated, since the cardinality of balls grows exponentially fast with the radius. We propose an algorithm to get a bound from below for this spectral radius in Cayley graphs with finitely many cone types (including for instance hyperbolic groups). In the genus 2 surface group, it improves by an order of magnitude the previous best bound, due to Bartholdi.
We remedy an omission in the proof of Proposition 2.7 of the paper ‘Cohomology and profinite topologies for solvable groups of finite rank’, Bull. Aust. Math. Soc.86 (2012), 254–265. This proposition states that a solvable group with finite abelian section rank has merely finitely many subgroups of any given index.
We compute coherent presentations of Artin monoids, that is, presentations by generators, relations, and relations between the relations. For that, we use methods of higher-dimensional rewriting that extend Squier’s and Knuth–Bendix’s completions into a homotopical completion–reduction, applied to Artin’s and Garside’s presentations. The main result of the paper states that the so-called Tits–Zamolodchikov 3-cells extend Artin’s presentation into a coherent presentation. As a byproduct, we give a new constructive proof of a theorem of Deligne on the actions of an Artin monoid on a category.
This paper is devoted to determine the connectedness of the branch loci of the moduli space of non-orientable unbordered Klein surfaces. We obtain a result similar to Nielsen's in order to determine topological conjugacy of automorphisms of prime order on such surfaces. Using this result we prove that the branch locus is connected for surfaces of topological genus 4 and 5.
We define a pseudometric on the set of all unbounded subsets of a metric space. The Kolmogorov quotient of this pseudometric space is a complete metric space. The definition of the pseudometric is guided by the principle that two unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this pseudometric we introduce and study a general concept of boundaries of metric spaces. Such a boundary is the closure of a subset in the Kolmogorov quotient determined by an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated group (or more general of a compactly generated, locally compact Hausdorff group). We show that these boundaries are quasi-isometric invariants and determine them in the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces). In addition we apply this concept to vertex-transitive graphs with polynomial growth and to random walks on nilpotent groups.
We show that two metacyclic groups of the following types are isomorphic if they have the same character tables: (i) split metacyclic groups, (ii) the metacyclic p-groups and (iii) the metacyclic {p, q}-groups, where p, q are odd primes.
Given two finitely generated groups that coarsely embed into a Hilbert space, it is known that their wreath product also embeds coarsely into a Hilbert space. We introduce a wreath product construction for general metric spaces $X,Y,Z$ and derive a condition, called the (${\it\delta}$-polynomial) path lifting property, such that coarse embeddability of $X,Y$ and $Z$ implies coarse embeddability of $X\wr _{Z}Y$. We also give bounds on the compression of $X\wr _{Z}Y$ in terms of ${\it\delta}$ and the compressions of $X,Y$ and $Z$.
Let ${\rm\Gamma}(n,p)$ denote the binomial model of a random triangular group. We show that there exist constants $c,C>0$ such that if $p\leqslant c/n^{2}$, then asymptotically almost surely (a.a.s.) ${\rm\Gamma}(n,p)$ is free, and if $p\geqslant C\log n/n^{2}$, then a.a.s. ${\rm\Gamma}(n,p)$ has Kazhdan’s property (T). Furthermore, we show that there exist constants $C^{\prime },c^{\prime }>0$ such that if $C^{\prime }/n^{2}\leqslant p\leqslant c^{\prime }\log n/n^{2}$, then a.a.s. ${\rm\Gamma}(n,p)$ is neither free nor has Kazhdan’s property (T).
We consider models of random groups in which the typical group is of intermediate rank (in particular, it is not hyperbolic). These models are parallel to Gromov’s well-known constructions, and include for example a ‘density model’ for groups of intermediate rank. The main novelty is the higher rank nature of the random groups. They are randomizations of certain families of lattices in algebraic groups (of rank 2) over local fields.
The classes of finite groups with minimal sets of generators of fixed cardinalities, named ${\mathcal{B}}$-groups, and groups with the basis property, in which every subgroup is a ${\mathcal{B}}$-group, contain only $p$-groups and some $\{p,q\}$-groups. Moreover, abelian ${\mathcal{B}}$-groups are exactly $p$-groups. If only generators of prime power orders are considered, then an analogue of property ${\mathcal{B}}$ is denoted by ${\mathcal{B}}_{pp}$ and an analogue of the basis property is called the pp-basis property. These classes are larger and contain all nilpotent groups and some cyclic $q$-extensions of $p$-groups. In this paper we characterise all finite groups with the pp-basis property as products of $p$-groups and precisely described $\{p,q\}$-groups.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}w$ be a multilinear commutator word, that is, a commutator of weight $n$ in $n$ different group variables. It is proved that if $G$ is a profinite group in which all pronilpotent subgroups generated by $w$-values are periodic, then the verbal subgroup $w(G)$ is locally finite.