To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Several authors have investigated the question of whether canonical logic-based accounts of belief revision, and especially the theory of AGM revision operators, are compatible with the dynamics of Bayesian conditioning. Here we show that Leitgeb’s stability rule for acceptance, which has been offered as a possible solution to the Lottery paradox, allows to bridge AGM revision and Bayesian update: using the stability rule, we prove that AGM revision operators emerge from Bayesian conditioning by an application of the principle of maximum entropy. In situations of information loss, or whenever the agent relies on a qualitative description of her information state—such as a plausibility ranking over hypotheses, or a belief set—the dynamics of AGM belief revision are compatible with Bayesian conditioning; indeed, through the maximum entropy principle, conditioning naturally generates AGM revision operators. This mitigates an impossibility theorem of Lin and Kelly for tracking Bayesian conditioning with AGM revision, and suggests an approach to the compatibility problem that highlights the information loss incurred by acceptance rules in passing from probabilistic to qualitative representations of belief.
We consider the structures $(\mathbb {Z}; \mathrm {SF}^{\mathbb {Z}})$, $(\mathbb {Z}; <, \mathrm {SF}^{\mathbb {Z}})$, $(\mathbb {Q}; \mathrm {SF}^{\mathbb {Q}})$, and $(\mathbb {Q}; <, \mathrm {SF}^{\mathbb {Q}})$ where $\mathbb {Z}$ is the additive group of integers, $\mathrm {SF}^{\mathbb {Z}}$ is the set of $a \in \mathbb {Z}$ such that $v_{p}(a) < 2$ for every prime p and corresponding p-adic valuation $v_{p}$, $\mathbb {Q}$ and $\mathrm {SF}^{\mathbb {Q}}$ are defined likewise for rational numbers, and $<$ denotes the natural ordering on each of these domains. We prove that the second structure is model-theoretically wild while the other three structures are model-theoretically tame. Moreover, all these results can be seen as examples where number-theoretic randomness yields model-theoretic consequences.
Rybakov (1984a) proved that the admissible rules of $\mathsf {IPC}$ are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
A problem is a multivalued function from a set of instances to a set of solutions. We consider only instances and solutions coded by sets of integers. A problem admits preservation of some computability-theoretic weakness property if every computable instance of the problem admits a solution relative to which the property holds. For example, cone avoidance is the ability, given a noncomputable set A and a computable instance of a problem ${\mathsf {P}}$, to find a solution relative to which A is still noncomputable.
In this article, we compare relativized versions of computability-theoretic notions of preservation which have been studied in reverse mathematics, and prove that the ones which were not already separated by natural statements in the literature actually coincide. In particular, we prove that it is equivalent to admit avoidance of one cone, of $\omega $ cones, of one hyperimmunity or of one non-$\Sigma ^{0}_1$ definition. We also prove that the hierarchies of preservation of hyperimmunity and non-$\Sigma ^{0}_1$ definitions coincide. On the other hand, none of these notions coincide in a nonrelativized setting.
Let $\to $ be a continuous $\protect \operatorname {\mathrm {[0,1]}}$-valued function defined on the unit square $\protect \operatorname {\mathrm {[0,1]}}^2$, having the following properties: (i) $x\to (y\to z)= y\to (x\to z)$ and (ii) $x\to y=1 $ iff $x\leq y$. Let $\neg x=x\to 0$. Then the algebra $W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$ satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let $x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$ and $\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$ Then there is precisely one isomorphism $\phi $ of W onto the standard Wajsberg algebra $W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$. Thus $x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$.
Using the category of metric spaces as a template, we develop a metric analogue of the categorical semantics of classical/intuitionistic logic, and show that the natural notion of predicate in this “continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic which is independently well-studied by model theorists and which finds various applications. We show this equivalence by exhibiting the real interval $[0,1]$ in the category of metric spaces as a “continuous subobject classifier” giving a correspondence not only between the two notions of predicate, but also between the natural notion of quantification in the continuous semantics and the existing notion of quantification in continuous logic.
Along the way, we formulate what it means for a given category to behave like the category of metric spaces, and afterwards show that any such category supports the aforementioned continuous semantics. As an application, we show that categories of presheaves of metric spaces are examples of such, and in fact even possess continuous subobject classifiers.
Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the potential infinite one can interpret first-order Peano arithmetic, but not second-order Peano arithmetic. We conclude that in order for the logicist to weaken the metaphysically loaded claim of necessary actual infinities, they must also weaken the mathematics they recover.
In this paper, we axiomatize the deontic logic in Fusco (2015), which uses a Stalnaker-inspired account of diagonal acceptance and a two-dimensional account of disjunction to treat Ross’s Paradox and the Puzzle of Free Choice Permission. On this account, disjunction-involving validities are a priori rather than necessary. We show how to axiomatize two-dimensional disjunction so that the introduction/elimination rules for boolean disjunction can be viewed as one-dimensional projections of more general two-dimensional rules. These completeness results help make explicit the restrictions Fusco’s account must place on free-choice inferences. They are also of independent interest, as they raise difficult questions about how to “lift” a Kripke frame for a one-dimensional modal logic into two dimensions.
The prevalent interpretation of Gödel’s Second Theorem states that a sufficiently adequate and consistent theory does not prove its consistency. It is however not entirely clear how to justify this informal reading, as the formulation of the underlying mathematical theorem depends on several arbitrary formalisation choices. In this paper I examine the theorem’s dependency regarding Gödel numberings. I introduce deviant numberings, yielding provability predicates satisfying Löb’s conditions, which result in provable consistency sentences. According to the main result of this paper however, these “counterexamples” do not refute the theorem’s prevalent interpretation, since once a natural class of admissible numberings is singled out, invariance is maintained.
This paper investigates and develops generalizations of two-dimensional modal logics to any finite dimension. These logics are natural extensions of multidimensional systems known from the literature on logics for a priori knowledge. We prove a completeness theorem for propositional n-dimensional modal logics and show them to be decidable by means of a systematic tableau construction.
This paper clarifies, revises, and extends the account of the transmission of truthmakers by core proofs that was set out in chap. 9 of Tennant (2017). Brauer provided two kinds of example making clear the need for this. Unlike Brouwer’s counterexamples to excluded middle, the examples of Brauer that we are dealing with here establish the need for appeals to excluded middle when applying, to the problem of truthmaker-transmission, the already classical metalinguistic theory of model-relative evaluations.
We investigate the modal logic of stepwise removal of objects, both for its intrinsic interest as a logic of quantification without replacement, and as a pilot study to better understand the complexity jumps between dynamic epistemic logics of model transformations and logics of freely chosen graph changes that get registered in a growing memory. After introducing this logic (MLSR) and its corresponding removal modality, we analyze its expressive power and prove a bisimulation characterization theorem. We then provide a complete Hilbert-style axiomatization for the logic of stepwise removal in a hybrid language enriched with nominals and public announcement operators. Next, we show that model-checking for MLSR is PSPACE-complete, while its satisfiability problem is undecidable. Lastly, we consider an issue of fine-structure: the expressive power gained by adding the stepwise removal modality to fragments of first-order logic.
The aim of the paper is to argue that all—or almost all—logical rules have exceptions. In particular, it is argued that this is a moral that we should draw from the semantic paradoxes. The idea that we should respond to the paradoxes by revising logic in some way is familiar. But previous proposals advocate the replacement of classical logic with some alternative logic. That is, some alternative system of rules, where it is taken for granted that these hold without exception. The present proposal is quite different. According to this, there is no such alternative logic. Rather, classical logic retains the status of the ‘one true logic’, but this status must be reconceived so as to be compatible with (almost) all of its rules admitting of exceptions. This would seem to have significant repercussions for a range of widely held views about logic: e.g., that it is a priori, or that it is necessary. Indeed, if the arguments of the paper succeed, then such views must be given up.
In this paper, we propose a new kind of nonprioritized operator which we call two level credibility-limited revision. When revising through a two level credibility-limited revision there are two levels of credibility and one of incredibility. When revising by a sentence at the highest level of credibility, the operator behaves as a standard revision, if the sentence is at the second level of credibility, then the outcome of the revision process coincides with a standard contraction by the negation of that sentence. If the sentence is not credible, then the original belief set remains unchanged. In this article, we axiomatically characterize several classes of two level credibility-limited revision operators.
We investigate a recent proposal for modal hypersequent calculi. The interpretation of relational hypersequents incorporates an accessibility relation along the hypersequent. These systems give the same interpretation of hypersequents as Lellman’s linear nested sequents, but were developed independently by Restall for S5 and extended to other normal modal logics by Parisi. The resulting systems obey Došen’s principle: the modal rules are the same across different modal logics. Different modal systems only differ in the presence or absence of external structural rules. With the exception of S5, the systems are modular in the sense that different structural rules capture different properties of the accessibility relation. We provide the first direct semantical cut-free completeness proofs for K, T, and D, and show how this method fails in the case of B and S4.
We present epistemic multilateral logic, a general logical framework for reasoning involving epistemic modality. Standard bilateral systems use propositional formulae marked with signs for assertion and rejection. Epistemic multilateral logic extends standard bilateral systems with a sign for the speech act of weak assertion (Incurvati & Schlöder, 2019) and an operator for epistemic modality. We prove that epistemic multilateral logic is sound and complete with respect to the modal logic $\mathbf {S5}$ modulo an appropriate translation. The logical framework developed provides the basis for a novel, proof-theoretic approach to the study of epistemic modality. To demonstrate the fruitfulness of the approach, we show how the framework allows us to reconcile classical logic with the contradictoriness of so-called Yalcin sentences and to distinguish between various inference patterns on the basis of the epistemic properties they preserve.
We characterize the determinacy of $F_\sigma $ games of length $\omega ^2$ in terms of determinacy assertions for short games. Specifically, we show that $F_\sigma $ games of length $\omega ^2$ are determined if, and only if, there is a transitive model of ${\mathsf {KP}}+{\mathsf {AD}}$ containing $\mathbb {R}$ and reflecting $\Pi _1$ facts about the next admissible set.
As a consequence, one obtains that, over the base theory ${\mathsf {KP}} + {\mathsf {DC}} + ``\mathbb {R}$ exists,” determinacy for $F_\sigma $ games of length $\omega ^2$ is stronger than ${\mathsf {AD}}$, but weaker than ${\mathsf {AD}} + \Sigma _1$-separation.
We present four classical theories of counterpossibles that combine modalities and counterfactuals. Two theories are anti-vacuist and forbid vacuously true counterfactuals, two are quasi-vacuist and allow counterfactuals to be vacuously true when their antecedent is not only impossible, but also inconceivable. The theories vary on how they restrict the interaction of modalities and counterfactuals. We provide a logical cartography with precise acceptable boundaries, illustrating to what extent nonvacuism about counterpossibles can be reconciled with classical logic.
We propose a dynamic hyperintensional logic of belief revision for non-omniscient agents, reducing the logical omniscience phenomena affecting standard doxastic/epistemic logic as well as AGM belief revision theory. Our agents don’t know all a priori truths; their belief states are not closed under classical logical consequence; and their belief update policies are such that logically or necessarily equivalent contents can lead to different revisions. We model both plain and conditional belief, then focus on dynamic belief revision. The key idea we exploit to achieve non-omniscience focuses on topic- or subject matter-sensitivity: a feature of belief states which is gaining growing attention in the recent literature.
There are close similarities between the Weihrauch lattice and the zoo of axiom systems in reverse mathematics. Following these similarities has often allowed researchers to translate results from one setting to the other. However, amongst the big five axiom systems from reverse mathematics, so far $\mathrm {ATR}_0$ has no identified counterpart in the Weihrauch degrees. We explore and evaluate several candidates, and conclude that the situation is complicated.