To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new characterization of tabularity in tense logic is established, namely, a tense logic L is tabular if and only if $\mathsf {tab}_n^T\in L$ for some $n\geq 1$. Two characterization theorems for the Post-completeness in tabular tense logics are given. Furthermore, a characterization of the Post-completeness in the lattice of all tense logics is established. Post numbers of some tense logics are shown.
We systematically study conservation theorems on theories of semi-classical arithmetic, which lie in-between classical arithmetic $\mathsf {PA}$ and intuitionistic arithmetic $\mathsf {HA}$. Using a generalized negative translation, we first provide a structured proof of the fact that $\mathsf {PA}$ is $\Pi _{k+2}$-conservative over $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ where ${\Sigma _k}\text {-}\mathrm {LEM}$ is the axiom scheme of the law-of-excluded-middle restricted to formulas in $\Sigma _k$. In addition, we show that this conservation theorem is optimal in the sense that for any semi-classical arithmetic T, if $\mathsf {PA}$ is $\Pi _{k+2}$-conservative over T, then ${T}$ proves ${\Sigma _k}\text {-}\mathrm {LEM}$. In the same manner, we also characterize conservation theorems for other well-studied classes of formulas by fragments of classical axioms or rules. This reveals the entire structure of conservation theorems with respect to the arithmetical hierarchy of classical principles.
Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing jump but below ATR$_{0}$ (and so $\Pi _{1}^{1}$-CA$_{0}$ or the hyperjump). There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They seem to be typical applications of ACA$_{0}$ but are actually THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse Mathematics [19] and supply several other natural principles of different and unusual levels of complexity.
This work led in [25] to a new neighborhood of the reverse mathematical zoo: almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA$_{0}$ they are THAs but on their own are very weak. Denizens both mathematical and logical are provided. Generalizations of several conservativity classes ($\Pi _{1}^{1}$, r-$\Pi _{1}^{1}$, and Tanaka) are defined and these ATHAs as well as many other principles are shown to be conservative over RCA$_{0}$ in all these senses and weak in other recursion-theoretic ways as well. These results answer a question raised by Hirschfeldt and reported in [19] by providing a long list of pairs of principles one of which is very weak over RCA$_{0}$ but over ACA$_{0}$ is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second-order arithmetic.
Minimally inconsistent LP (MiLP) is a nonmonotonic paraconsistent logic based on Graham Priest’s logic of paradox (LP). Unlike LP, MiLP purports to recover, in consistent situations, all of classical reasoning. The present paper conducts a proof-theoretic analysis of MiLP. I highlight certain properties of this logic, introduce a simple sequent system for it, and establish soundness and completeness results. In addition, I show how to use my proof system in response to a criticism of this logic put forward by J. C. Beall.
In “Some Remarks on Extending and Interpreting Theories with a Partial Truth Predicate”, Reinhardt [21] famously proposed an instrumentalist interpretation of the truth theory Kripke–Feferman ($\mathrm {KF}$) in analogy to Hilbert’s program. Reinhardt suggested to view $\mathrm {KF}$ as a tool for generating “the significant part of $\mathrm {KF}$”, that is, as a tool for deriving sentences of the form $\mathrm{Tr}\ulcorner {\varphi }\urcorner $. The constitutive question of Reinhardt’s program was whether it was possible “to justify the use of nonsignificant sentences entirely within the framework of significant sentences”. This question was answered negatively by Halbach & Horsten [10] but we argue that under a more careful interpretation the question may receive a positive answer. To this end, we propose to shift attention from $\mathrm {KF}$-provably true sentences to $\mathrm {KF}$-provably true inferences, that is, we shall identify the significant part of $\mathrm {KF}$ with the set of pairs $\langle {\Gamma , \Delta }\rangle $, such that $\mathrm {KF}$ proves that if all members of $\Gamma $ are true, at least one member of $\Delta $ is true. In way of addressing Reinhardt’s question we show that the provably true inferences of suitable $\mathrm {KF}$-like theories coincide with the provable sequents of matching versions of the theory Partial Kripke–Feferman ($\mathrm {PKF}$).
Neo-Fregeanism aims to provide a possible route to knowledge of arithmetic via Hume’s principle, but this is of only limited significance if it cannot account for how the vast majority of arithmetic knowledge, accrued by ordinary people, is obtained. I argue that Hume’s principle does not capture what is ordinarily meant by numerical identity, but that we can do much better by buttressing plural logic with plural versions of the ancestral operator, obtaining natural and plausible characterizations of various key arithmetic concepts, including finiteness, equinumerosity and addition and multiplication of cardinality—revealing these to be logical concepts, and obtaining much of ordinary arithmetic knowledge as logical knowledge. Supplementing this with an abstraction principle and a simple axiom of infinity (known either empirically or modally) we obtain a full interpretation of arithmetic.
The language of linear temporal logic can be interpreted on the class of dynamic topological systems, giving rise to the intuitionistic temporal logic ${\sf ITL}^{\sf c}_{\Diamond \forall }$, recently shown to be decidable by Fernández-Duque. In this article we axiomatize this logic, some fragments, and prove completeness for several familiar spaces.
In this paper, using a propositional modal language extended with the window modality, we capture the first-order properties of various mereological theories. In this setting, $\Box \varphi $ reads all the parts (of the current object) are$\varphi $, interpreted on the models with a whole-part binary relation under various constraints. We show that all the usual mereological theories can be captured by modal formulas in our language via frame correspondence. We also correct a mistake in the existing completeness proof for a basic system of mereology by providing a new construction of the canonical model.
We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers a calculus for classical logic.
Any intermediate propositional logic (i.e., a logic including intuitionistic logic and contained in classical logic) can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $-calculus. The first and second $\varepsilon $-theorems for classical logic establish conservativity of the $\varepsilon $-calculus over its classical base logic. It is well known that the second $\varepsilon $-theorem fails for the intuitionistic $\varepsilon $-calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $- and $\tau $-formulas and using the translation of quantifiers into $\varepsilon $- and $\tau $-terms to intermediate logics. It is shown that conservativity over the propositional base logic also holds for such intermediate ${\varepsilon \tau }$-calculi. The “extended” first $\varepsilon $-theorem holds if the base logic is finite-valued Gödel–Dummett logic, and fails otherwise, but holds for certain provable formulas in infinite-valued Gödel logic. The second $\varepsilon $-theorem also holds for finite-valued first-order Gödel logics. The methods used to prove the extended first $\varepsilon $-theorem for infinite-valued Gödel logic suggest applications to theories of arithmetic.
Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to have a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies that the variety has equationally definable principal congruences. This result is then used to provide necessary and sufficient conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated lattices has a model completion, it must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with a binary operation to obtain theories that do have a model completion.
Evaluative studies of inductive inferences have been pursued extensively with mathematical rigor in many disciplines, such as statistics, econometrics, computer science, and formal epistemology. Attempts have been made in those disciplines to justify many different kinds of inductive inferences, to varying extents. But somehow those disciplines have said almost nothing to justify a most familiar kind of induction, an example of which is this: “We’ve seen this many ravens and they all are black, so all ravens are black.” This is enumerative induction in its full strength. For it does not settle with a weaker conclusion (such as “the ravens observed in the future will all be black”); nor does it proceed with any additional premise (such as the statistical IID assumption). The goal of this paper is to take some initial steps toward a justification for the full version of enumerative induction, against counterinduction, and against the skeptical policy. The idea is to explore various epistemic ideals, mathematically defined as different modes of convergence to the truth, and look for one that is weak enough to be achievable and strong enough to justify a norm that governs both the long run and the short run. So the proposal is learning-theoretic in essence, but a Bayesian version is developed as well.
Francesco Berto proposed a logic for imaginative episodes. The logic establishes certain (in)validities concerning episodic imagination. They are not all equally plausible as principles of episodic imagination. The logic also does not model that the initial input of an imaginative episode is deliberately chosen. Stit-imagination logic models the imagining agent’s deliberate choice of the content of their imagining. However, the logic does not model the episodic nature of imagination. The present paper combines the two logics, thereby modelling imaginative episodes with deliberately chosen initial input. We use a combination of stit-imagination logic and a content-sensitive variably strict conditional à la Berto, for which we give a Chellas–Segerberg semantics. The proposed semantics has the following advantages over Berto’s: (i) we model the deliberate choice of initial input of imaginative episodes (in a multi-agent setting), (ii) we show frame correspondences for axiomatic analogues of Berto’s validities, which (iii) allows the possibility to disregard axioms that might be considered not plausible as principles concerning imaginative episodes. We do not take a definite stance on whether these should be disregarded but give reasons for why one might want to disregard them. Finally, we compare our semantics briefly with recent work, which aims to model voluntary imagination, and argue that our semantics models different aspects.
In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (ergodic) proof due to Furstenberg (Section 3). Furstenberg’s ergodic proof is striking because it utilizes intuitively foreign and infinitary resources to prove a finitary combinatorial result and does so in a perspicuous fashion. I claim that Furstenberg’s proof is explanatory in light of its clear expression of a crucial structural result, which provides the “reason why” Szemerédi’s theorem is true. This is, however, rather surprising: how can such intuitively different conceptual resources “get a grip on” the theorem to be proved? I account for this phenomenon by articulating a new construal of the content of a mathematical statement, which I call structural content (Section 4). I argue that the availability of structural content saves intuitive epistemic distinctions made in mathematical practice and simultaneously explicates the intervention of surprising and explanatorily rich conceptual resources. Structural content also disarms general arguments for thinking that impurity and explanatory power might come apart. Finally, I sketch a proposal that, once structural content is in hand, impure resources lead to explanatory proofs via suitably understood varieties of simplification and unification (Section 5).
The Gödel translation provides an embedding of the intuitionistic logic $\mathsf {IPC}$ into the modal logic $\mathsf {Grz}$, which then embeds into the modal logic $\mathsf {GL}$ via the splitting translation. Combined with Solovay’s theorem that $\mathsf {GL}$ is the modal logic of the provability predicate of Peano Arithmetic $\mathsf {PA}$, both $\mathsf {IPC}$ and $\mathsf {Grz}$ admit provability interpretations. When attempting to ‘lift’ these results to the monadic extensions $\mathsf {MIPC}$, $\mathsf {MGrz}$, and $\mathsf {MGL}$ of these logics, the same techniques no longer work. Following a conjecture made by Esakia, we add an appropriate version of Casari’s formula to these monadic extensions (denoted by a ‘+’), obtaining that the Gödel translation embeds $\mathsf {M^{+}IPC}$ into $\mathsf {M^{+}Grz}$ and the splitting translation embeds $\mathsf {M^{+}Grz}$ into $\mathsf {MGL}$. As proven by Japaridze, Solovay’s result extends to the monadic system $\mathsf {MGL}$, which leads us to a provability interpretation of both $\mathsf {M^{+}IPC}$ and $\mathsf {M^{+}Grz}$.
This article provides an algebraic study of the propositional system $\mathtt {InqB}$ of inquisitive logic. We also investigate the wider class of $\mathtt {DNA}$-logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, $\mathtt {DNA}$-varieties. We prove that the lattice of $\mathtt {DNA}$-logics is dually isomorphic to the lattice of $\mathtt {DNA}$-varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff’s classic variety theorems. We also introduce locally finite $\mathtt {DNA}$-varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of $\mathtt {InqB}$ is dually isomorphic to the ordinal $\omega +1$ and give an axiomatisation of these logics via Jankov $\mathtt {DNA}$-formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].1
We show that monadic intuitionistic quantifiers admit the following temporal interpretation: “always in the future” (for $\forall $) and “sometime in the past” (for $\exists $). It is well known that Prior’s intuitionistic modal logic ${\sf MIPC}$ axiomatizes the monadic fragment of the intuitionistic predicate logic, and that ${\sf MIPC}$ is translated fully and faithfully into the monadic fragment ${\sf MS4}$ of the predicate ${\sf S4}$ via the Gödel translation. To realize the temporal interpretation mentioned above, we introduce a new tense extension ${\sf TS4}$ of ${\sf S4}$ and provide a full and faithful translation of ${\sf MIPC}$ into ${\sf TS4}$. We compare this new translation of ${\sf MIPC}$ with the Gödel translation by showing that both ${\sf TS4}$ and ${\sf MS4}$ can be translated fully and faithfully into a tense extension of ${\sf MS4}$, which we denote by ${\sf MS4.t}$. This is done by utilizing the relational semantics for these logics. As a result, we arrive at the diagram of full and faithful translations shown in Figure 1 which is commutative up to logical equivalence. We prove the finite model property (fmp) for ${\sf MS4.t}$ using algebraic semantics, and show that the fmp for the other logics involved can be derived as a consequence of the fullness and faithfulness of the translations considered.
According to conciliatory views on the significance of disagreement, it’s rational for you to become less confident in your take on an issue in case your epistemic peer’s take on it is different. These views are intuitively appealing, but they also face a powerful objection: in scenarios that involve disagreements over their own correctness, conciliatory views appear to self-defeat and, thereby, issue inconsistent recommendations. This paper provides a response to this objection. Drawing on the work from defeasible logics paradigm and abstract argumentation, it develops a formal model of conciliatory reasoning and explores its behavior in the troubling scenarios. The model suggests that the recommendations that conciliatory views issue in such scenarios are perfectly reasonable—even if outwardly they may look odd.
In this work we present some new contributions towards two different directions in the study of modal logic. First we employ tense logics to provide a temporal interpretation of intuitionistic quantifiers as “always in the future” and “sometime in the past.” This is achieved by modifying the Gödel translation and resolves an asymmetry between the standard interpretation of intuitionistic quantifiers.
Then we generalize the classic Gelfand–Naimark–Stone duality between compact Hausdorff spaces and uniformly complete bounded archimedean $\ell $-algebras to a duality encompassing compact Hausdorff spaces with continuous relations. This leads to the notion of modal operators on bounded archimedean $\ell $-algebras and in particular on rings of continuous real-valued functions on compact Hausdorff spaces. This new duality is also a generalization of the classic Jónsson-Tarski duality in modal logic.
We devise imperative programming languages for verified real number computation where real numbers are provided as abstract data types such that the users of the languages can express real number computation by considering real numbers as abstract mathematical entities. Unlike other common approaches toward real number computation, based on an algebraic model that lacks implementability or transcendental computation, or finite-precision approximation such as using double precision computation that lacks a formal foundation, our languages are devised based on computable analysis, a foundation of rigorous computation over continuous data. Consequently, the users of the language can easily program real number computation and reason about the behaviours of their programs, relying on their mathematical knowledge of real numbers without worrying about artificial roundoff errors. As the languages are imperative, we adopt precondition–postcondition-style program specification and Hoare-style program verification methodologies. Consequently, the users of the language can easily program a computation over real numbers, specify the expected behaviour of the program, including termination, and prove the correctness of the specification. Furthermore, we suggest extending the languages with other interesting continuous data, such as matrices, continuous real functions, et cetera.