To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In [16], Peterzil and Steinhorn proved that if a group G definable in an o-minimal structure is not definably compact, then G contains a definable torsion-free subgroup of dimension 1. We prove here a p-adic analogue of the Peterzil–Steinhorn theorem, in the special case of abelian groups. Let G be an abelian group definable in a p-adically closed field M. If G is not definably compact then there is a definable subgroup H of dimension 1 which is not definably compact. In a future paper we will generalize this to non-abelian G.
For a ring R, Hilbert’s Tenth Problem $HTP(R)$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP(\mathbb {Z}[W^{-1}])$, which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$. It is known that for almost all W, the jump $W'$ does not $1$-reduce to $HTP(R_W)$. In contrast, we show that every Turing degree contains a set W for which such a $1$-reduction does hold: these W are said to be HTP-complete. Continuing, we derive additional results regarding the impossibility that a decision procedure for $W'$ from $HTP(\mathbb {Z}[W^{-1}])$ can succeed uniformly on a set of measure $1$, and regarding the consequences for the boundary sets of the $HTP$ operator in case $\mathbb {Z}$ has an existential definition in $\mathbb {Q}$.
Every countable structure has a sentence of the infinitary logic $\mathcal {L}_{\omega _1 \omega }$ which characterizes that structure up to isomorphism among countable structures. Such a sentence is called a Scott sentence, and can be thought of as a description of the structure. The least complexity of a Scott sentence for a structure can be thought of as a measurement of the complexity of describing the structure. We begin with an introduction to the area, with short and simple proofs where possible, followed by a survey of recent advances.
We prove some results about the model theory of fields with a derivation of the Frobenius map, especially that the model companion of this theory is axiomatizable by axioms used by Wood in the case of the theory $\operatorname {DCF}_p$ and that it eliminates quantifiers after adding the inverse of the Frobenius map to the language. This strengthens the results from [4]. As a by-product, we get a new geometric axiomatization of this model companion. Along the way we also prove a quantifier elimination result, which holds in a much more general context and we suggest a way of giving “one-dimensional” axiomatizations for model companions of some theories of fields with operators.
We will show that almost all nonassociative relation algebras are symmetric and integral (in the sense that the fraction of both labelled and unlabelled structures that are symmetric and integral tends to $1$), and using a Fraïssé limit, we will establish that the classes of all atom structures of nonassociative relation algebras and relation algebras both have $0$–$1$ laws. As a consequence, we obtain improved asymptotic formulas for the numbers of these structures and broaden some known probabilistic results on relation algebras.
We consider locally o-minimal structures possessing tame topological properties shared by models of DCTC and uniformly locally o-minimal expansions of the second kind of densely linearly ordered abelian groups. We derive basic properties of dimension of a set definable in the structures including the addition property, which is the dimension equality for definable maps whose fibers are equi-dimensional. A decomposition theorem into quasi-special submanifolds is also demonstrated.
We study the bi-embeddability and elementary bi-embeddability relation on graphs under Borel reducibility and investigate the degree spectra realized by these relations. We first give a Borel reduction from embeddability on graphs to elementary embeddability on graphs. As a consequence we obtain that elementary bi-embeddability on graphs is a $\boldsymbol {\Sigma }^1_1$ complete equivalence relation. We then investigate the algorithmic properties of this reduction. We obtain that elementary bi-embeddability on the class of computable graphs is $\Sigma ^1_1$ complete with respect to computable reducibility and show that the elementary bi-embeddability and bi-embeddability spectra realized by graphs are related.
Consider an algorithm computing in a differential field with several commuting derivations such that the only operations it performs with the elements of the field are arithmetic operations, differentiation, and zero testing. We show that, if the algorithm is guaranteed to terminate on every input, then there is a computable upper bound for the size of the output of the algorithm in terms of the size of the input. We also generalize this to algorithms working with models of good enough theories (including, for example, difference fields).
We then apply this to differential algebraic geometry to show that there exists a computable uniform upper bound for the number of components of any variety defined by a system of polynomial PDEs. We then use this bound to show the existence of a computable uniform upper bound for the elimination problem in systems of polynomial PDEs with delays.
We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly, if $Th(M)$ is not small, then $M^{eq}$ has a Borel complete reduct, and if a theory T is not $\omega $-stable, then the elementary diagram of some countable model of T has a Borel complete reduct.
We show that the Lascar group $\operatorname {Gal}_L(T)$ of a first-order theory T is naturally isomorphic to the fundamental group $\pi _1(|\mathrm {Mod}(T)|)$ of the classifying space of the category of models of T and elementary embeddings. We use this identification to compute the Lascar groups of several example theories via homotopy-theoretic methods, and in fact completely characterize the homotopy type of $|\mathrm {Mod}(T)|$ for these theories T. It turns out that in each of these cases, $|\operatorname {Mod}(T)|$ is aspherical, i.e., its higher homotopy groups vanish. This raises the question of which homotopy types are of the form $|\mathrm {Mod}(T)|$ in general. As a preliminary step towards answering this question, we show that every homotopy type is of the form $|\mathcal {C}|$ where $\mathcal {C}$ is an Abstract Elementary Class with amalgamation for $\kappa $-small objects, where $\kappa $ may be taken arbitrarily large. This result is improved in another paper.
We generalise the correspondence between $\aleph _0$-categorical theories and their automorphism groups to arbitrary complete theories in classical logic, and to some theories (including, in particular, all $\aleph _0$-categorical ones) in continuous logic.
Fisher [10] and Baur [6] showed independently in the seventies that if T is a complete first-order theory extending the theory of modules, then the class of models of T with pure embeddings is stable. In [25, 2.12], it is asked if the same is true for any abstract elementary class $(K, \leq _p)$ such that K is a class of modules and $\leq _p$ is the pure submodule relation. In this paper we give some instances where this is true:Theorem.
Assume R is an associative ring with unity. Let $(K, \leq _p)$ be an AEC such that $K \subseteq R\text {-Mod}$
and K is closed under finite direct sums, then:
• If K is closed under pure-injective envelopes, then $\mathbf {K}$ is $\lambda $-stable for every $\lambda \geq \operatorname {LS}(\mathbf {K})$ such that $\lambda ^{|R| + \aleph _0}= \lambda $.
• If K is closed under pure submodules and pure epimorphic images, then $\mathbf {K}$ is $\lambda $-stable for every $\lambda $ such that $\lambda ^{|R| + \aleph _0}= \lambda $.
• Assume R is Von Neumann regular. If $\mathbf {K}$ is closed under submodules and has arbitrarily large models, then $\mathbf {K}$ is $\lambda $-stable for every $\lambda $ such that $\lambda ^{|R| + \aleph _0}= \lambda $.
As an application of these results we give new characterizations of noetherian rings, pure-semisimple rings, Dedekind domains, and fields via superstability. Moreover, we show how these results can be used to show a link between being good in the stability hierarchy and being good in the axiomatizability hierarchy.
Another application is the existence of universal models with respect to pure embeddings in several classes of modules. Among them, the class of flat modules and the class of $\mathfrak {s}$-torsion modules.
A bipartite graph $H = \left (V_1, V_2; E \right )$ with $\lvert V_1\rvert + \lvert V_2\rvert = n$ is semilinear if $V_i \subseteq \mathbb {R}^{d_i}$ for some $d_i$ and the edge relation E consists of the pairs of points $(x_1, x_2) \in V_1 \times V_2$ satisfying a fixed Boolean combination of s linear equalities and inequalities in $d_1 + d_2$ variables for some s. We show that for a fixed k, the number of edges in a $K_{k,k}$-free semilinear H is almost linear in n, namely $\lvert E\rvert = O_{s,k,\varepsilon }\left (n^{1+\varepsilon }\right )$ for any $\varepsilon> 0$; and more generally, $\lvert E\rvert = O_{s,k,r,\varepsilon }\left (n^{r-1 + \varepsilon }\right )$ for a $K_{k, \dotsc ,k}$-free semilinear r-partite r-uniform hypergraph.
As an application, we obtain the following incidence bound: given $n_1$ points and $n_2$ open boxes with axis-parallel sides in $\mathbb {R}^d$ such that their incidence graph is $K_{k,k}$-free, there can be at most $O_{k,\varepsilon }\left (n^{1+\varepsilon }\right )$ incidences. The same bound holds if instead of boxes, one takes polytopes cut out by the translates of an arbitrary fixed finite set of half-spaces.
We also obtain matching upper and (superlinear) lower bounds in the case of dyadic boxes on the plane, and point out some connections to the model-theoretic trichotomy in o-minimal structures (showing that the failure of an almost-linear bound for some definable graph allows one to recover the field operations from that graph in a definable manner).
We present a natural standard translation of inquisitive modal logic $\mathrm{InqML}$ into first-order logic over the natural two-sorted relational representations of the intended models, which captures the built-in higher-order features of $\mathrm{InqML}$. This translation is based on a graded notion of flatness that ties the inherent second-order, team-semantic features of $\mathrm{InqML}$ over information states to subsets or tuples of bounded size. A natural notion of pseudo-models, which relaxes the non-elementary constraints on the intended models, gives rise to an elementary, purely model-theoretic proof of the compactness property for $\mathrm{InqML}$. Moreover, we prove a Hennessy-Milner theorem for $\mathrm{InqML}$, which crucially uses $\omega $-saturated pseudo-models and the new standard translation. As corollaries we also obtain van Benthem style characterisation theorems.
The general theory developed by Ben Yaacov for metric structures provides Fraïssé limits which are approximately ultrahomogeneous. We show here that this result can be strengthened in the case of relational metric structures. We give an extra condition that guarantees exact ultrahomogenous limits. The condition is quite general. We apply it to stochastic processes, the class of diversities, and its subclass of $L_1$ diversities.
In 2001, the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\mathbf {No}}$ of surreal numbers was brought to the fore by the first author and employed to provide necessary and sufficient conditions for an ordered field (ordered $K$-vector space) to be isomorphic to an initial subfield ($K$-subspace) of ${\mathbf {No}}$, i.e. a subfield ($K$-subspace) of ${\mathbf {No}}$ that is an initial subtree of ${\mathbf {No}}$. In this sequel, analogous results are established for ordered exponential fields, making use of a slight generalization of Schmeling’s conception of a transseries field. It is further shown that a wide range of ordered exponential fields are isomorphic to initial exponential subfields of $({\mathbf {No}}, \exp )$. These include all models of $T({\mathbb R}_W, e^x)$, where ${\mathbb R}_W$ is the reals expanded by a convergent Weierstrass system W. Of these, those we call trigonometric-exponential fields are given particular attention. It is shown that the exponential functions on the initial trigonometric-exponential subfields of ${\mathbf {No}}$, which includes ${\mathbf {No}}$ itself, extend to canonical exponential functions on their surcomplex counterparts. The image of the canonical map of the ordered exponential field ${\mathbb T}^{LE}$ of logarithmic-exponential transseries into ${\mathbf {No}}$ is shown to be initial, as are the ordered exponential fields ${\mathbb R}((\omega ))^{EL}$ and ${\mathbb R}\langle \langle \omega \rangle \rangle $.
A structure ${\mathbb Y}$ of a relational language L is called almost chainable iff there are a finite set $F \subset Y$ and a linear order $\,<$ on the set $Y\setminus F$ such that for each partial automorphism $\varphi $ (i.e., local automorphism, in Fraïssé’s terminology) of the linear order $\langle Y\setminus F, <\rangle $ the mapping $\mathop {\mathrm {id}}\nolimits _F \cup \varphi $ is a partial automorphism of ${\mathbb Y}$. By theorems of Fraïssé and Pouzet, an infinite structure ${\mathbb Y}$ is almost chainable iff the profile of ${\mathbb Y}$ is bounded; namely, iff there is a positive integer m such that ${\mathbb Y}$ has $\leq m$ non-isomorphic substructures of size n, for each positive integer n. A complete first order L-theory ${\mathcal T}$ having infinite models is called almost chainable iff all models of ${\mathcal T}$ are almost chainable and it is shown that the last condition is equivalent to the existence of one countable almost chainable model of ${\mathcal T}$. In addition, it is proved that an almost chainable theory has either one or continuum many non-isomorphic countable models and, thus, the Vaught conjecture is confirmed for almost chainable theories.
In light of a gap found by Krupiński, we give a new proof of associativity for the Morley (or “nonforking”) product of invariant measures in NIP theories.
We ask, when is a property of a model a logical property? According to the so-called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms. We relate this to model-theoretic characteristics of abstract logics in which the model class is definable. This results in a graded concept of logicality in the terminology of Sagi [46]. We investigate which characteristics of logics, such as variants of the Löwenheim–Skolem theorem, Completeness theorem, and absoluteness, are relevant from the logicality point of view, continuing earlier work by Bonnay, Feferman, and Sagi. We suggest that a logic is the more logical the closer it is to first order logic. We also offer a refinement of the result of McGee that logical properties of models can be expressed in $L_{\infty \infty }$ if the expression is allowed to depend on the cardinality of the model, based on replacing $L_{\infty \infty }$ by a “tamer” logic.
We consider G, a linear algebraic group defined over $\Bbbk $, an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K, we can associate to it a compact G-space $S^\mu _G(\Bbbk )$ consisting of $\mu $-types on G. We show that for each $p_\mu \in S^\mu _G(\Bbbk )$, $\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$ is a solvable infinite algebraic group when $p_\mu $ is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of $\mathrm {Stab}\left (p_\mu \right )$ in terms of the dimension of p.