To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate, in ZFC, the behavior of abstract elementary classes (AECs) categorical in many successive small cardinals. We prove for example that a universal $\mathbb {L}_{\omega _1, \omega }$ sentence categorical on an end segment of cardinals below $\beth _\omega $ must be categorical also everywhere above $\beth _\omega $. This is done without any additional model-theoretic hypotheses (such as amalgamation or arbitrarily large models) and generalizes to the much broader framework of tame AECs with weak amalgamation and coherent sequences.
Quantum set theory (QST) and topos quantum theory (TQT) are two long running projects in the mathematical foundations of quantum mechanics (QM) that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory inside of nonclassical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to the physical interpretation, ‘Q-worlds’. Here, we provide a unifying framework that allows us to (i) better understand the relationship between different Q-worlds, and (ii) define a general method for transferring concepts and results between TQT and QST, thereby significantly increasing the expressive power of both approaches. Along the way, we develop a novel connection to paraconsistent logic and introduce a new class of structures that have significant implications for recent work on paraconsistent set theory.
We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A3| ≤ O(|A|), or small alternation, |AA−1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.
Many phenomena in geometry and analysis can be explained via the theory of $D$-modules, but this theory explains close to nothing in the non-archimedean case, by the absence of integration by parts. Hence there is a need to look for alternatives. A central example of a notion based on the theory of $D$-modules is the notion of holonomic distributions. We study two recent alternatives of this notion in the context of distributions on non-archimedean local fields, namely $\mathscr{C}^{\text{exp}}$-class distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)] by showing that each distribution of the $\mathscr{C}^{\text{exp}}$-class is WF-holonomic and thus provides a framework of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting because the $\mathscr{C}^{\text{exp}}$-class contains many natural distributions, in particular, the distributions studied by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We show also another stability result of this class, namely, one can regularize distributions without leaving the $\mathscr{C}^{\text{exp}}$-class. We strengthen a link from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] between zero loci and smooth loci for functions and distributions of the $\mathscr{C}^{\text{exp}}$-class. A key ingredient is a new resolution result for subanalytic functions (by alterations), based on embedded resolution for analytic functions and model theory.
We present three examples of countable homogeneous structures (also called Fraïssé limits) whose automorphism groups are not universal, namely, fail to contain isomorphic copies of all automorphism groups of their substructures.
Our first example is a particular case of a rather general construction on Fraïssé classes, which we call diversification, leading to automorphism groups containing copies of all finite groups. Our second example is a special case of another general construction on Fraïssé classes, the mixed sums, leading to a Fraïssé class with all finite symmetric groups appearing as automorphism groups and at the same time with a torsion-free automorphism group of its Fraïssé limit. Our last example is a Fraïssé class of finite models with arbitrarily large finite abelian automorphism groups, such that the automorphism group of its Fraïssé limit is again torsion-free.
It is known that there exists a first-order sentence that holds in a finite group if and only if the group is soluble. Here it is shown that the corresponding statements with ‘solubility’ replaced by ‘nilpotence’ and ‘perfectness’, among others, are false.
These facts present difficulties for the study of pseudofinite groups. However, a very weak form of Frattini’s theorem on the nilpotence of the Frattini subgroup of a finite group is proved for pseudofinite groups.
A first-order theory is equational if every definable set is a Boolean combination of instances of equations, that is, of formulae such that the family of finite intersections of instances has the descending chain condition. Equationality is a strengthening of stability. We show the equationality of the theory of proper extensions of algebraically closed fields and of the theory of separably closed fields of arbitrary imperfection degree.
There is a Turing computable embedding $\Phi $ of directed graphs $\mathcal {A}$ in undirected graphs (see [15]). Moreover, there is a fixed tuple of formulas that give a uniform effective interpretation; i.e., for all directed graphs $\mathcal {A}$, these formulas interpret $\mathcal {A}$ in $\Phi (\mathcal {A})$. It follows that $\mathcal {A}$ is Medvedev reducible to $\Phi (\mathcal {A})$ uniformly; i.e., $\mathcal {A}\leq _s\Phi (\mathcal {A})$ with a fixed Turing operator that serves for all $\mathcal {A}$. We observe that there is a graph G that is not Medvedev reducible to any linear ordering. Hence, G is not effectively interpreted in any linear ordering. Similarly, there is a graph that is not interpreted in any linear ordering using computable $\Sigma _2$ formulas. Any graph can be interpreted in a linear ordering using computable $\Sigma _3$ formulas. Friedman and Stanley [4] gave a Turing computable embedding L of directed graphs in linear orderings. We show that there is no fixed tuple of $L_{\omega _1\omega }$-formulas that, for all G, interpret the input graph G in the output linear ordering $L(G)$. Harrison-Trainor and Montalbán [7] have also shown this, by a quite different proof.
We characterize the linear order types $\tau $ with the property that given any countable linear order $\mathcal {L}$, $\tau \cdot \mathcal {L}$ is a computable linear order iff $\mathcal {L}$ is a computable linear order, as exactly the finite nonempty order types.
The 3-valued paraconsistent logic Ciore was developed by Carnielli, Marcos and de Amo under the name LFI2, in the study of inconsistent databases from the point of view of logics of formal inconsistency (LFIs). They also considered a first-order version of Ciore called LFI2*. The logic Ciore enjoys extreme features concerning propagation and retropropagation of the consistency operator: a formula is consistent if and only if some of its subformulas is consistent. In addition, Ciore is algebraizable in the sense of Blok and Pigozzi. On the other hand, the logic LFI2* satisfies a somewhat counter-intuitive property: the universal and the existential quantifier are inter-definable by means of the paraconsistent negation, as it happens in classical first-order logic with respect to the classical negation. This feature seems to be unnatural, given that both quantifiers have the classical meaning in LFI2*, and that this logic does not satisfy the De Morgan laws with respect to its paraconsistent negation. The first goal of the present article is to introduce a first-order version of Ciore (which we call QCiore) preserving the spirit of Ciore, that is, without introducing unexpected relationships between the quantifiers. The second goal of the article is to adapt to QCiore the partial structures semantics for the first-order paraconsistent logic LPT1 introduced by Coniglio and Silvestrini, which generalizes the semantic notion of quasi-truth considered by Mikeberg, da Costa and Chuaqui. Finally, some important results of classical Model Theory are obtained for this logic, such as Robinson’s joint consistency theorem, amalgamation and interpolation. Although we focus on QCiore, this framework can be adapted to other 3-valued first-order LFIs.
We show quantifier elimination theorems for real closed valued fields with separated analytic structure and overconvergent analytic structure in their natural one-sorted languages and deduce that such structures are weakly o-minimal. We also provide a short proof that algebraically closed valued fields with separated analytic structure (in any rank) are C-minimal.
We show that in general for a given group the structure of a maximal hyperbolic tower over a free group is not canonical: we construct examples of groups having hyperbolic tower structures over free subgroups which have arbitrarily large ratios between their ranks. These groups have the same first order theory as non-abelian free groups and we use them to study the weight of types in this theory.
In this article, we functorially associate definable sets to $k$-analytic curves, and definable maps to analytic morphisms between them, for a large class of $k$-analytic curves. Given a $k$-analytic curve $X$, our association allows us to have definable versions of several usual notions of Berkovich analytic geometry such as the branch emanating from a point and the residue curve at a point of type 2. We also characterize the definable subsets of the definable counterpart of $X$ and show that they satisfy a bijective relation with the radial subsets of $X$. As an application, we recover (and slightly extend) results of Temkin concerning the radiality of the set of points with a given prescribed multiplicity with respect to a morphism of $k$-analytic curves. In the case of the analytification of an algebraic curve, our construction can also be seen as an explicit version of Hrushovski and Loeser’s theorem on iso-definability of curves. However, our approach can also be applied to strictly $k$-affinoid curves and arbitrary morphisms between them, which are currently not in the scope of their setting.
We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism (true in all larger $V_\beta $), Grothendieck–Zermelo potentialism (true in all larger $V_\kappa $ for inaccessible cardinals $\kappa $), transitive-set potentialism (true in all larger transitive sets), forcing potentialism (true in all forcing extensions), countable-transitive-model potentialism (true in all larger countable transitive models of ZFC), countable-model potentialism (true in all larger countable models of ZFC), and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, and an upper bound of S5, proving in each case that these bounds are optimal. The validity of S5 in a world is a potentialist maximality principle, an interesting set-theoretic principle of its own. The results can be viewed as providing an analysis of the modal commitments of the various set-theoretic multiverse conceptions corresponding to each potentialist account.
We consider expansions of o-minimal structures on the real field by collections of restrictions to the positive real line of the canonical Weierstrass products associated with sequences such as $(-n^{s})_{n>0}$ (for $s>0$) and $(-s^{n})_{n>0}$ (for $s>1$), and also expansions by associated functions such as logarithmic derivatives. There are only three possible outcomes known so far: (i) the expansion is o-minimal (that is, definable sets have only finitely many connected components); (ii) every Borel subset of each $\mathbb{R}^{n}$ is definable; (iii) the expansion is interdefinable with a structure of the form $(\mathfrak{R}^{\prime },\unicode[STIX]{x1D6FC}^{\mathbb{Z}})$ where $\unicode[STIX]{x1D6FC}>1$, $\unicode[STIX]{x1D6FC}^{\mathbb{Z}}$ is the set of all integer powers of $\unicode[STIX]{x1D6FC}$, and $\mathfrak{R}^{\prime }$ is o-minimal and defines no irrational power functions.
Let $T_{n}(\mathbb{F})$ be the semigroup of all upper triangular $n\times n$ matrices over a field $\mathbb{F}$. Let $UT_{n}(\mathbb{F})$ and $UT_{n}^{\pm 1}(\mathbb{F})$ be subsemigroups of $T_{n}(\mathbb{F})$, respectively, having $0$s and/or $1$s on the main diagonal and $0$s and/or $\pm 1$s on the main diagonal. We give some sufficient conditions under which an involution semigroup is nonfinitely based. As an application, we show that $UT_{2}(\mathbb{F}),UT_{2}^{\pm 1}(\mathbb{F})$ and $T_{2}(\mathbb{F})$ as involution semigroups under the skew transposition are nonfinitely based for any field $\mathbb{F}$.
We establish the first global results for groups definable in tame expansions of o-minimal structures. Let ${\mathcal{N}}$ be an expansion of an o-minimal structure ${\mathcal{M}}$ that admits a good dimension theory. The setting includes dense pairs of o-minimal structures, expansions of ${\mathcal{M}}$ by a Mann group, or by a subgroup of an elliptic curve, or a dense independent set. We prove: (1) a Weil’s group chunk theorem that guarantees a definable group with an o-minimal group chunk is o-minimal, (2) a full characterization of those definable groups that are o-minimal as those groups that have maximal dimension; namely, their dimension equals the dimension of their topological closure, (3) as an application, if ${\mathcal{N}}$ expands ${\mathcal{M}}$ by a dense independent set, then every definable group is o-minimal.
It is known that a countable $\omega $-categorical structure interprets all finite structures primitively positively if and only if its polymorphism clone maps to the clone of projections on a two-element set via a continuous clone homomorphism. We investigate the relationship between the existence of a clone homomorphism to the projection clone, and the existence of such a homomorphism which is continuous and thus meets the above criterion.