To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper critically examines two arguments against the generic multiverse, both of which are due to W. Hugh Woodin. Versions of the first argument have appeared a number of times in print, while the second argument is relatively novel. We shall investigate these arguments through the lens of two different attitudes one may take toward the methodology and metaphysics of set theory; and we shall observe that the impact of these arguments depends significantly on which of these attitudes is upheld. Our examination of the second argument involves the development of a new (inner) model for Steel’s multiverse theory, which is delivered in the Appendix.
It is well-known that an element of a commutative ring with identity is nilpotent if, and only if , it lies in every prime ideal of the ring. A modification of this fact is amenable to a very simple proof mining analysis. We formulate a quantitative version of this modification and obtain an explicit bound. We present an application. This proof mining analysis is the leitmotif for some comments and observations on the methodology of computational extraction. In particular, we emphasize that the formulation of quantitative versions of ordinary mathematical theorems is of independent interest from proof mining metatheorems.
We develop a number of variants of Lifschitz realizability for $\mathbf {CZF}$ by building topological models internally in certain realizability models. We use this to show some interesting metamathematical results about constructive set theory with variants of the lesser limited principle of omniscience including consistency with unique Church’s thesis, consistency with some Brouwerian principles and variants of the numerical existence property.
In this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.
We prove a number of elementary facts about computability in partial combinatory algebras (pca’s). We disprove a suggestion made by Kreisel about using Friedberg numberings to construct extensional pca’s. We then discuss separability and elements without total extensions. We relate this to Ershov’s notion of precompleteness, and we show that precomplete numberings are not 1–1 in general.
In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$. In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$.
This paper establishes a conjecture of Steel [7] regarding the structure of elementary embeddings from a level of the cumulative hierarchy into itself. Steel’s question is related to the Mitchell order on these embeddings, studied in [5] and [7]. Although this order is known to be illfounded, Steel conjectured that it has certain large wellfounded suborders, which is what we establish. The proof relies on a simple and general analysis of the much broader class of extender embeddings and a variant of the Mitchell order called the internal relation.
We obtain a criterion for an analytic subset of a Euclidean space to contain points of differentiability of a typical Lipschitz function: namely, that it cannot be covered by countably many sets, each of which is closed and purely unrectifiable (has a zero-length intersection with every $C^1$ curve). Surprisingly, we establish that any set failing this criterion witnesses the opposite extreme of typical behaviour: in any such coverable set, a typical Lipschitz function is everywhere severely non-differentiable.
We show that there is a cuppable c.e. degree, all of whose cupping partners are high. In particular, not all cuppable degrees are ${\operatorname {\mathrm {low}}}_3$-cuppable, or indeed ${\operatorname {\mathrm {low}}}_n$ cuppable for any n, refuting a conjecture by Li. On the other hand, we show that one cannot improve highness to superhighness. We also show that the ${\operatorname {\mathrm {low}}}_2$-cuppable degrees coincide with the array computable-cuppable degrees, giving a full understanding of the latter class.
The aim of this paper is to shed light on our understanding of large scale properties of infinite strings. We say that one string $\alpha $ has weaker large scale geometry than that of $\beta $ if there is color preserving bi-Lipschitz map from $\alpha $ into $\beta $ with small distortion. This definition allows us to define a partially ordered set of large scale geometries on the classes of all infinite strings. This partial order compares large scale geometries of infinite strings. As such, it presents an algebraic tool for classification of global patterns. We study properties of this partial order. We prove, for instance, that this partial order has a greatest element and also possess infinite chains and antichains. We also investigate the sets of large scale geometries of strings accepted by finite state machines such as Büchi automata. We provide an algorithm that describes large scale geometries of strings accepted by Büchi automata. This connects the work with the complexity theory. We also prove that the quasi-isometry problem is a $\Sigma _2^0$-complete set, thus providing a bridge with computability theory. Finally, we build algebraic structures that are invariants of large scale geometries. We invoke asymptotic cones, a key concept in geometric group theory, defined via model-theoretic notion of ultra-product. Partly, we study asymptotic cones of algorithmically random strings, thus connecting the topic with algorithmic randomness.
Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for worlds and one for information states, and characterise inquisitive modal logic as the bisimulation invariant fragment of first-order logic over various natural classes of two-sorted structures.
We introduce the framework of AECats (abstract elementary categories), generalizing both the category of models of some first-order theory and the category of subsets of models. Any AEC and any compact abstract theory (“cat”, as introduced by Ben-Yaacov) forms an AECat. In particular, we find applications in positive logic and continuous logic: the category of (subsets of) models of a positive or continuous theory is an AECat. The Kim–Pillay theorem for first-order logic characterizes simple theories by the properties dividing independence has. We prove a version of the Kim–Pillay theorem for AECats with the amalgamation property, generalizing the first-order version and existing versions for positive logic.
We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.
We show that a computable function $f:\mathbb R\rightarrow \mathbb R$ has Luzin’s property (N) if and only if it reflects $\Pi ^1_1$-randomness, if and only if it reflects $\Delta ^1_1({\mathcal {O}})$-randomness, and if and only if it reflects ${\mathcal {O}}$-Kurtz randomness, but reflecting Martin–Löf randomness or weak-2-randomness does not suffice. Here a function f is said to reflect a randomness notion R if whenever $f(x)$ is R-random, then x is R-random as well. If additionally f is known to have bounded variation, then we show f has Luzin’s (N) if and only if it reflects weak-2-randomness, and if and only if it reflects $\emptyset '$-Kurtz randomness. This links classical real analysis with algorithmic randomness.
Ramsey’s theorem asserts that every k-coloring of $[\omega ]^n$ admits an infinite monochromatic set. Whenever $n \geq 3$, there exists a computable k-coloring of $[\omega ]^n$ whose solutions compute the halting set. On the other hand, for every computable k-coloring of $[\omega ]^2$ and every noncomputable set C, there is an infinite monochromatic set H such that $C \not \leq _T H$. The latter property is known as cone avoidance.
In this article, we design a natural class of Ramsey-like theorems encompassing many statements studied in reverse mathematics. We prove that this class admits a maximal statement satisfying cone avoidance and use it as a criterion to re-obtain many existing proofs of cone avoidance. This maximal statement asserts the existence, for every k-coloring of $[\omega ]^n$, of an infinite subdomain $H \subseteq \omega $ over which the coloring depends only on the sparsity of its elements. This confirms the intuition that Ramsey-like theorems compute Turing degrees only through the sparsity of its solutions.
We determine the modal logic of fixed-point models of truth and their axiomatizations by Solomon Feferman via Solovay-style completeness results. Given a fixed-point model $\mathcal {M}$, or an axiomatization S thereof, we find a modal logic M such that a modal sentence $\varphi $ is a theorem of M if and only if the sentence $\varphi ^*$ obtained by translating the modal operator with the truth predicate is true in $\mathcal {M}$ or a theorem of S under all such translations. To this end, we introduce a novel version of possible worlds semantics featuring both classical and nonclassical worlds and establish the completeness of a family of noncongruent modal logics whose internal logic is nonclassical with respect to this semantics.
Let $\mathcal M=(M,<,\ldots)$ be a linearly ordered first-order structure and T its complete theory. We investigate conditions for T that could guarantee that $\mathcal M$ is not much more complex than some colored orders (linear orders with added unary predicates). Motivated by Rubin’s work [5], we label three conditions expressing properties of types of T and/or automorphisms of models of T. We prove several results which indicate the “geometric” simplicity of definable sets in models of theories satisfying these conditions. For example, we prove that the strongest condition characterizes, up to definitional equivalence (inter-definability), theories of colored orders expanded by equivalence relations with convex classes.
A subset X of a Polish group G is Haar null if there exists a Borel probability measure μ and a Borel set B containing X such that μ(gBh) = 0 for every g, h ∈ G. A set X is Haar meager if there exists a compact metric space K, a continuous function f : K → G and a Borel set B containing X such that f−1(gBh) is meager in K for every g, h ∈ G. We calculate (in ZFC) the four cardinal invariants (add, cov, non, cof) of these two σ-ideals for the simplest non-locally compact Polish group, namely in the case $G = \mathbb {Z}^\omega$. In fact, most results work for separable Banach spaces as well, and many results work for Polish groups admitting a two-sided invariant metric. This answers a question of the first named author and Vidnyánszky.
We characterize Weihrauch reducibility in $ \operatorname {\mathrm {E-PA^{\omega }}} + \operatorname {\mathrm {QF-AC^{0,0}}}$ and all systems containing it by the provability in a linear variant of the same calculus using modifications of Gödel’s Dialectica interpretation that incorporate ideas from linear logic, nonstandard arithmetic, higher-order computability, and phase semantics.
We give an example of two ordered structures $\mathcal {M},\mathcal {N}$ in the same language $\mathcal {L}$ with the same universe, the same order and admitting the same one-variable definable subsets such that $\mathcal {M}$ is a model of the common theory of o-minimal $\mathcal {L}$-structures and $\mathcal {N}$ admits a definable, closed, bounded, and discrete subset and a definable injective self-mapping of that subset which is not surjective. This answers negatively two question by Schoutens; the first being whether there is an axiomatization of the common theory of o-minimal structures in a given language by conditions on one-variable definable sets alone. The second being whether definable completeness and type completeness imply the pigeonhole principle. It also partially answers a question by Fornasiero asking whether definable completeness of an expansion of a real closed field implies the pigeonhole principle.