To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article deals with the problem of when, given a collection $\mathcal {C}$ of weakly compact operators between separable Banach spaces, there exists a separable reflexive Banach space Z with a Schauder basis so that every element in $\mathcal {C}$ factors through Z (or through a subspace of Z). In particular, we show that there exists a reflexive space Z with a Schauder basis so that for each separable Banach space X, each weakly compact operator from X to $L_1[0,1]$ factors through Z.
We also prove the following descriptive set theoretical result: Let $\mathcal {L}$ be the standard Borel space of bounded operators between separable Banach spaces. We show that if $\mathcal {B}$ is a Borel subset of weakly compact operators between Banach spaces with separable duals, then for $A \in \mathcal {B}$, the assignment $A \to A^*$ can be realised by a Borel map $\mathcal {B}\to \mathcal {L}$.
We take Carnap’s problem to be to what extent standard consequence relations in various formal languages fix the meaning of their logical vocabulary, alone or together with additional constraints on the form of the semantics. This paper studies Carnap’s problem for basic modal logic. Setting the stage, we show that neighborhood semantics is the most general form of compositional possible worlds semantics, and proceed to ask which standard modal logics (if any) constrain the box operator to be interpreted as in relational Kripke semantics. Except when restricted to finite domains, no modal logic characterizes exactly the Kripkean interpretations of $\Box $. Moreover, we show that, in contrast with the case of first-order logic, the obvious requirement of permutation invariance is not adequate in the modal case. After pointing out some known facts about modal logics that nevertheless force the Kripkean interpretation, we focus on another feature often taken to embody the gist of modal logic: locality. We show that invariance under point-generated subframes (properly defined) does single out the Kripkean interpretations, but only among topological interpretations, not in general. Finally, we define a notion of bisimulation invariance—another aspect of locality—that, together with a reasonable closure condition, gives the desired general result. Along the way, we propose a new perspective on normal neighborhood frames as filter frames, consisting of a set of worlds equipped with an accessibility relation, and a free filter at every world.
We study the existence of transformations of the transfinite plane that allow one to reduce Ramsey-theoretic statements concerning uncountable Abelian groups into classical partition relations for uncountable cardinals.
To exemplify: we prove that for every inaccessible cardinal $\kappa $, if $\kappa $ admits a stationary set that does not reflect at inaccessibles, then the classical negative partition relation $\kappa \nrightarrow [\kappa ]^2_\kappa $ implies that for every Abelian group $(G,+)$ of size $\kappa $, there exists a map $f:G\rightarrow G$ such that for every $X\subseteq G$ of size $\kappa $ and every $g\in G$, there exist $x\neq y$ in X such that $f(x+y)=g$.
Satisfaction systems and reductions between them are presented as an appropriate context for analyzing the satisfiability and the validity problems. The notion of reduction is generalized in order to cope with the meet-combination of logics. Reductions between satisfaction systems induce reductions between the respective satisfiability problems and (under mild conditions) also between their validity problems. Sufficient conditions are provided for relating satisfiability problems to validity problems. Reflection results for decidability in the presence of reductions are established. The validity problem in the meet-combination is proved to be decidable whenever the validity problem for the components are decidable. Several examples are discussed, namely, involving modal and intuitionistic logics, as well as the meet-combination of $\textrm {K}$ modal logic and intuitionistic logic.
Bernard Bolzano (1781–1848) is commonly thought to have attempted to develop a theory of size for infinite collections that follows the so-called part–whole principle, according to which the whole is always greater than any of its proper parts. In this paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite and show that, contrary to mainstream interpretations, it is best understood as a theory of infinite sums. Our formal results show that Bolzano’s infinite sums can be equipped with the rich and original structure of a non-commutative ordered ring, and that Bolzano’s views on the mathematical infinite are, after all, consistent.
Frege’s definition of the real numbers, as envisaged in the second volume of Grundgesetze der Arithmetik, is fatally flawed by the inconsistency of Frege’s ill-fated Basic Law V. We restate Frege’s definition in a consistent logical framework and investigate whether it can provide a logical foundation of real analysis. Our conclusion will deem it doubtful that such a foundation along the lines of Frege’s own indications is possible at all.
A strong coloring on a cardinal $\kappa $ is a function $f:[\kappa ]^2\to \kappa $ such that for every $A\subseteq \kappa $ of full size $\kappa $, every color $\unicode{x3b3} <\kappa $ is attained by $f\restriction [A]^2$. The symbol
which asserts the existence of a coloring$f:[\kappa ]^2\to \kappa $ which is strong over a partition$p:[\kappa ]^2\to \theta $. A coloring f is strong over p if for every $A\in [\kappa ]^{\kappa }$ there is $i<\theta $ so that for every color $\unicode{x3b3} <\kappa $ is attained by $f\restriction ([A]^2\cap p^{-1}(i))$.
We prove that whenever $\kappa \nrightarrow [\kappa ]^2_{\kappa }$ holds, also $\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ holds for an arbitrary finite partition p. Similarly, arbitrary finite p-s can be added to stronger symbols which hold in any model of ZFC. If $\kappa ^{\theta }=\kappa $, then $\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ and stronger symbols, like $\operatorname {Pr}_1(\kappa ,\kappa ,\kappa ,\chi )_p$ or $\operatorname {Pr}_0(\kappa ,\kappa ,\kappa ,\aleph _0)_p$, also hold for an arbitrary partition p to $\theta $ parts.
We study the logic of so-called lexicographic or priority merge for multi-agent plausibility models. We start with a systematic comparison between the logical behavior of priority merge and the more standard notion of pooling through intersection, used to define, for instance, distributed knowledge. We then provide a sound and complete axiomatization of the logic of priority merge, as well as a proof theory in labeled sequents that admits cut. We finally study Moorean phenomena and define a dynamic resolution operator for priority merge for which we also provide a complete set of reduction axioms.
This paper collects and presents unpublished notes of Kurt Gödel concerning the field of many-valued logic. In order to get a picture as complete as possible, both formal and philosophical notes, transcribed from the Gabelsberger shorthand system, are included.
I provide an analysis of sentences of the form ‘To be F is to be G’ in terms of exact truth-maker semantics—an approach that identifies the meanings of sentences with the states of the world directly responsible for their truth-values. Roughly, I argue that these sentences hold just in case that which makes something F also makes it G. This approach is hyperintensional and possesses desirable logical and modal features. In particular, these sentences are reflexive, transitive, and symmetric, and if they are true, then they are necessarily true, and it is necessary that all and only Fs are Gs. I motivate my account over Correia and Skiles’ [11] prominent alternative and close by defining an irreflexive and asymmetric notion of analysis in terms of the symmetric and reflexive notion.
In previous work, the author has shown that $\Pi ^1_1$-induction along $\mathbb N$ is equivalent to a suitable formalization of the statement that every normal function on the ordinals has a fixed point. More precisely, this was proved for a representation of normal functions in terms of Girard’s dilators, which are particularly uniform transformations of well orders. The present paper works on the next type level and considers uniform transformations of dilators, which are called 2-ptykes. We show that $\Pi ^1_2$-induction along $\mathbb N$ is equivalent to the existence of fixed points for all 2-ptykes that satisfy a certain normality condition. Beyond this specific result, the paper paves the way for the analysis of further $\Pi ^1_4$-statements in terms of well ordering principles.
We show that under the assumption of the existence of the canonical inner model with one Woodin cardinal $M_1$, there is a model of $\mathsf {ZFC}$ in which $\mbox {NS}_{\omega _{1}}$ is $\aleph _2$-saturated and ${\Delta }_{1}$-definable with $\omega _1$ as a parameter which answers a question of S. D. Friedman and L. Wu. We also show that starting from an arbitrary universe with a Woodin cardinal, there is a model with $\mbox {NS}_{\omega _{1}}$ saturated and ${\Delta }_{1}$-definable with a ladder system $\vec {C}$ and a full Suslin tree T as parameters. Both results rely on a new coding technique whose presentation is the main goal of this article .
We investigate the structure of ultrafilters on Boolean algebras in the framework of Tukey reducibility. In particular, this paper provides several techniques to construct ultrafilters which are not Tukey maximal. Furthermore, we connect this analysis with a cardinal invariant of Boolean algebras, the ultrafilter number, and prove consistency results concerning its possible values on Cohen and random algebras.
We use the model theoretic notion of coheir to give short proofs of old and new theorems in Ramsey Theory. As an illustration we start from Ramsey’s theorem itself. Then we prove Hindman’s theorem and the Hales–Jewett theorem. Finally, we prove two Ramsey theoretic principles that have among their consequences partition theorems due to Carlson and to Gowers.
We define a new type of “shatter function” for set systems that satisfies a Sauer–Shelah type dichotomy, but whose polynomial-growth case is governed by Shelah’s two-rank instead of VC dimension. We identify the least exponent bounding the rate of growth of the shatter function, the quantity analogous to VC density, with Shelah’s $\omega $-rank.
We show that recurrence conditions do not yield invariant Borel probability measures in the descriptive set-theoretic milieu, in the strong sense that if a Borel action of a locally compact Polish group on a standard Borel space satisfies such a condition but does not have an orbit supporting an invariant Borel probability measure, then there is an invariant Borel set on which the action satisfies the condition but does not have an invariant Borel probability measure.
We introduce three families of diagonal reflection principles for matrices of stationary sets of ordinals. We analyze both their relationships among themselves and their relationships with other known principles of simultaneous stationary reflection, the strong reflection principle, and the existence of square sequences.
We show that assuming modest large cardinals, there is a definable class of ordinals, closed and unbounded beneath every uncountable cardinal, so that for any closed and unbounded subclasses $P, Q, {\langle L[P],\in ,P \rangle }$ and ${\langle L[Q],\in ,Q \rangle }$ possess the same reals, satisfy the Generalised Continuum Hypothesis, and moreover are elementarily equivalent. Examples of such P are Card, the class of uncountable cardinals, I the uniform indiscernibles, or for any n the class $C^{n}{=_{{\operatorname {df}}}}\{ \lambda \, | \, V_{\lambda } \prec _{{\Sigma }_{n}}V\}$; moreover the theory of such models is invariant under ZFC-preserving extensions. They also all have a rich structure satisfying many of the usual combinatorial principles and a definable wellorder of the reals. The inner model constructed using definability in the language augmented by the Härtig quantifier is thus also characterized.
For every $n\in \omega \setminus \{0,1\}$ we introduce the following weak choice principle:
$\operatorname {nC}_{<\aleph _0}^-:$For every infinite family$\mathcal {F}$of finite sets of size at least n there is an infinite subfamily$\mathcal {G}\subseteq \mathcal {F}$with a selection function$f:\mathcal {G}\to \left [\bigcup \mathcal {G}\right ]^n$such that$f(F)\in [F]^n$for all$F\in \mathcal {G}$.
Moreover, we consider the following choice principle:
$\operatorname {KWF}^-:$For every infinite family$\mathcal {F}$of finite sets of size at least$2$there is an infinite subfamily$\mathcal {G}\subseteq \mathcal {F}$with a Kinna–Wagner selection function. That is, there is a function$g\colon \mathcal {G}\to \mathcal {P}\left (\bigcup \mathcal {G}\right )$with$\emptyset \not =f(F)\subsetneq F$for every$F\in \mathcal {G}$.
We will discuss the relations between these two choice principles and their relations to other well-known weak choice principles. Moreover, we will discuss what happens when we replace $\mathcal {F}$ by a linearly ordered or a well-ordered family.