To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subset X of a Polish group G is Haar null if there exists a Borel probability measure μ and a Borel set B containing X such that μ(gBh) = 0 for every g, h ∈ G. A set X is Haar meager if there exists a compact metric space K, a continuous function f : K → G and a Borel set B containing X such that f−1(gBh) is meager in K for every g, h ∈ G. We calculate (in ZFC) the four cardinal invariants (add, cov, non, cof) of these two σ-ideals for the simplest non-locally compact Polish group, namely in the case $G = \mathbb {Z}^\omega$. In fact, most results work for separable Banach spaces as well, and many results work for Polish groups admitting a two-sided invariant metric. This answers a question of the first named author and Vidnyánszky.
We characterize Weihrauch reducibility in $ \operatorname {\mathrm {E-PA^{\omega }}} + \operatorname {\mathrm {QF-AC^{0,0}}}$ and all systems containing it by the provability in a linear variant of the same calculus using modifications of Gödel’s Dialectica interpretation that incorporate ideas from linear logic, nonstandard arithmetic, higher-order computability, and phase semantics.
We give an example of two ordered structures $\mathcal {M},\mathcal {N}$ in the same language $\mathcal {L}$ with the same universe, the same order and admitting the same one-variable definable subsets such that $\mathcal {M}$ is a model of the common theory of o-minimal $\mathcal {L}$-structures and $\mathcal {N}$ admits a definable, closed, bounded, and discrete subset and a definable injective self-mapping of that subset which is not surjective. This answers negatively two question by Schoutens; the first being whether there is an axiomatization of the common theory of o-minimal structures in a given language by conditions on one-variable definable sets alone. The second being whether definable completeness and type completeness imply the pigeonhole principle. It also partially answers a question by Fornasiero asking whether definable completeness of an expansion of a real closed field implies the pigeonhole principle.
We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures.
We study computable Polish spaces and Polish groups up to homeomorphism. We prove a natural effective analogy of Stone duality, and we also develop an effective definability technique which works up to homeomorphism. As an application, we show that there is a $\Delta ^0_2$ Polish space not homeomorphic to a computable one. We apply our techniques to build, for any computable ordinal $\alpha $, an effectively closed set not homeomorphic to any $0^{(\alpha )}$-computable Polish space; this answers a question of Nies. We also prove analogous results for compact Polish groups and locally path-connected spaces.
The main objective of this paper is the following two results. (1) There exists a computable bi-orderable group that does not have a computable bi-ordering; (2) there exists a bi-orderable, two-generated computably presented solvable group with undecidable word problem. Both of the groups can be found among two-generated solvable groups of derived length $3$.
(1) [a]nswers a question posed by Downey and Kurtz; (2) answers a question posed by Bludov and Glass in Kourovka Notebook.
One of the technical tools used to obtain the main results is a computational extension of an embedding theorem of B. Neumann that was studied by the author earlier. In this paper we also compliment that result and derive new corollaries that might be of independent interest.
Here, we present a category ${\mathbf {pEff}}$ which can be considered a predicative variant of Hyland's Effective Topos ${{\mathbf {Eff} }}$ for the following reasons. First, its construction is carried in Feferman’s predicative theory of non-iterative fixpoints ${{\widehat {ID_1}}}$. Second, ${\mathbf {pEff}}$ is a list-arithmetic locally cartesian closed pretopos with a full subcategory ${{\mathbf {pEff}_{set}}}$ of small objects having the same categorical structure which is preserved by the embedding in ${\mathbf {pEff}}$; furthermore subobjects in ${{\mathbf {pEff}_{set}}}$ are classified by a non-small object in ${\mathbf {pEff}}$. Third ${\mathbf {pEff}}$ happens to coincide with the exact completion of the lex category defined as a predicative rendering in ${{\widehat {ID_1}}}$ of the subcategory of ${{\mathbf {Eff} }}$ of recursive functions and it validates the Formal Church’s thesis. Hence pEff turns out to be itself a predicative rendering of a full subcategory of ${{\mathbf {Eff} }}$.
We describe punctual categoricity in several natural classes, including binary relational structures and mono-unary functional structures. We prove that every punctually categorical structure in a finite unary language is ${\text {PA}}(0')$-categorical, and we show that this upper bound is tight. We also construct an example of a punctually categorical structure whose degree of categoricity is $0''$. We also prove that, with a bit of work, the latter result can be pushed beyond $\Delta ^1_1$, thus showing that punctually categorical structures can possess arbitrarily complex automorphism orbits.
As a consequence, it follows that binary relational structures and unary structures are not universal with respect to primitive recursive interpretations; equivalently, in these classes every rich enough interpretation technique must necessarily involve unbounded existential quantification or infinite disjunction. In contrast, it is well-known that both classes are universal for Turing computability.
A linear space is a system of points and lines such that any two distinct points determine a unique line; a Steiner k-system (for $k \geq 2$) is a linear space such that each line has size exactly k. Clearly, as a two-sorted structure, no linear space can be strongly minimal. We formulate linear spaces in a (bi-interpretable) vocabulary $\tau $ with a single ternary relation R. We prove that for every integer k there exist $2^{\aleph _0}$-many integer valued functions $\mu $ such that each $\mu $ determines a distinct strongly minimal Steiner k-system $\mathcal {G}_\mu $, whose algebraic closure geometry has all the properties of the ab initio Hrushovski construction. Thus each is a counterexample to the Zilber Trichotomy Conjecture.
This paper explores the analysis of ability, where ability is to be understood in the epistemic sense—in contrast to what might be called a causal sense. There are plenty of cases where an agent is able to perform an action that guarantees a given result even though she does not know which of her actions guarantees that result. Such an agent possesses the causal ability but lacks the epistemic ability. The standard analysis of such epistemic abilities relies on the notion of action types—as opposed to action tokens—and then posits that an agent has the epistemic ability to do something if and only if there is an action type available to her that she knows guarantees it. We show that these action types are not needed: we present a formalism without action types that can simulate analyzes of epistemic ability that rely on action types. Our formalism is a standard epistemic extension of the theory of “seeing to it that”, which arose from a modal tradition in the logic of action.
This paper explores relational syllogistic logics, a family of logical systems related to reasoning about relations in extensions of the classical syllogistic. These are all decidable logical systems. We prove completeness theorems and complexity results for a natural subfamily of relational syllogistic logics, parametrized by constructors for terms and for sentences.
In this article, I provide Urquhart-style semilattice semantics for three connexive logics in an implication-negation language (I call these “pure theories of connexive implication”). The systems semantically characterized include the implication-negation fragment of a connexive logic of Wansing, a relevant connexive logic recently developed proof-theoretically by Francez, and an intermediate system that is novel to this article. Simple proofs of soundness and completeness are given and the semantics is used to establish various facts about the systems (e.g., that two of the systems have the variable sharing property). I emphasize the intuitive content of the semantics and discuss how natural informational considerations underly each of the examined systems.
A vexing question in Bayesian epistemology is how an agent should update on evidence which she assigned zero prior credence. Some theorists have suggested that, in such cases, the agent should update by Kolmogorov conditionalization, a norm based on Kolmogorov’s theory of regular conditional distributions. However, it turns out that in some situations, a Kolmogorov conditionalizer will plan to always assign a posterior credence of zero to the evidence she learns. Intuitively, such a plan is irrational and easily Dutch bookable. In this paper, we propose a revised norm, Kolmogorov–Blackwell conditionalization, which avoids this problem. We prove a Dutch book theorem and converse Dutch book theorem for this revised norm, and relate our results to those of Rescorla (2018).
This paper puts forward a new account of rigorous mathematical proof and its epistemology. One novel feature is a focus on how the skill of reading and writing valid proofs is learnt, as a way of understanding what validity itself amounts to. The account is used to address two current questions in the literature: that of how mathematicians are so good at resolving disputes about validity, and that of whether rigorous proofs are necessarily formalizable.
Several authors have investigated the question of whether canonical logic-based accounts of belief revision, and especially the theory of AGM revision operators, are compatible with the dynamics of Bayesian conditioning. Here we show that Leitgeb’s stability rule for acceptance, which has been offered as a possible solution to the Lottery paradox, allows to bridge AGM revision and Bayesian update: using the stability rule, we prove that AGM revision operators emerge from Bayesian conditioning by an application of the principle of maximum entropy. In situations of information loss, or whenever the agent relies on a qualitative description of her information state—such as a plausibility ranking over hypotheses, or a belief set—the dynamics of AGM belief revision are compatible with Bayesian conditioning; indeed, through the maximum entropy principle, conditioning naturally generates AGM revision operators. This mitigates an impossibility theorem of Lin and Kelly for tracking Bayesian conditioning with AGM revision, and suggests an approach to the compatibility problem that highlights the information loss incurred by acceptance rules in passing from probabilistic to qualitative representations of belief.
Henle, Mathias, and Woodin proved in [21] that, provided that ${\omega }{\rightarrow }({\omega })^{{\omega }}$ holds in a model M of ZF, then forcing with $([{\omega }]^{{\omega }},{\subseteq }^*)$ over M adds no new sets of ordinals, thus earning the name a “barren” extension. Moreover, under an additional assumption, they proved that this generic extension preserves all strong partition cardinals. This forcing thus produces a model $M[\mathcal {U}]$, where $\mathcal {U}$ is a Ramsey ultrafilter, with many properties of the original model M. This begged the question of how important the Ramseyness of $\mathcal {U}$ is for these results. In this paper, we show that several classes of $\sigma $-closed forcings which generate non-Ramsey ultrafilters have the same properties. Such ultrafilters include Milliken–Taylor ultrafilters, a class of rapid p-points of Laflamme, k-arrow p-points of Baumgartner and Taylor, and extensions to a class of ultrafilters constructed by Dobrinen, Mijares, and Trujillo. Furthermore, the class of Boolean algebras $\mathcal {P}({\omega }^{{\alpha }})/{\mathrm {Fin}}^{\otimes {\alpha }}$, $2\le {\alpha }<{\omega }_1$, forcing non-p-points also produce barren extensions.
Recent work in computability theory has focused on various notions of asymptotic computability, which capture the idea of a set being “almost computable.” One potentially upsetting result is that all four notions of asymptotic computability admit “almost computable” sets in every Turing degree via coding tricks, contradicting the notion that “almost computable” sets should be computationally close to the computable sets. In response, Astor introduced the notion of intrinsic density: a set has defined intrinsic density if its image under any computable permutation has the same asymptotic density. Furthermore, introduced various notions of intrinsic computation in which the standard coding tricks cannot be used to embed intrinsically computable sets in every Turing degree. Our goal is to study the sets which are intrinsically small, i.e. those that have intrinsic density zero. We begin by studying which computable functions preserve intrinsic smallness. We also show that intrinsic smallness and hyperimmunity are computationally independent notions of smallness, i.e. any hyperimmune degree contains a Turing-equivalent hyperimmune set which is “as large as possible” and therefore not intrinsically small. Our discussion concludes by relativizing the notion of intrinsic smallness and discussing intrinsic computability as it relates to our study of intrinsic smallness.
We prove first-order definability of the prime subring inside polynomial rings, whose coefficient rings are (commutative unital) reduced and indecomposable. This is achieved by means of a uniform formula in the language of rings with signature $(0,1,+,\cdot )$. In the characteristic zero case, the claim implies that the full theory is undecidable, for rings of the referred type. This extends a series of results by Raphael Robinson, holding for certain polynomial integral domains, to a more general class.
We show that if M is a countable transitive model of $\text {ZF}$ and if $a,b$ are reals not in M, then there is a G generic over M such that $b \in L[a,G]$. We then present several applications such as the following: if J is any countable transitive model of $\text {ZFC}$ and $M \not \subseteq J$ is another countable transitive model of $\text {ZFC}$ of the same ordinal height $\alpha $, then there is a forcing extension N of J such that $M \cup N$ is not included in any transitive model of $\text {ZFC}$ of height $\alpha $. Also, assuming $0^{\#}$ exists, letting S be the set of reals generic over L, although S is disjoint from the Turing cone above $0^{\#}$, we have that for any non-constructible real a, $\{ a \oplus s : s \in S \}$ is cofinal in the Turing degrees.
We set up a general context in which one can prove Sauer–Shelah type lemmas. We apply our general results to answer a question of Bhaskar [1] and give a slight improvement to a result of Malliaris and Terry [7]. We also prove a new Sauer–Shelah type lemma in the context of $ \operatorname {\textrm{op}}$-rank, a notion of Guingona and Hill [4].