To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the modal logic of a crowded locally compact generalized ordered space is $\textsf {S4}$. This provides a version of the McKinsey–Tarski theorem for generalized ordered spaces. We then utilize this theorem to axiomatize the modal logic of an arbitrary locally compact generalized ordered space.
Let S be an orientable surface of finite type. Using Pho-on’s infinite unicorn paths, we prove the hyperfiniteness of orbit equivalence relations induced by the actions of the mapping class group of S on the Gromov boundaries of the arc graph and the curve graph of S. In the curve graph case, this strengthens the results of Hamenstädt and Kida that this action is universally amenable and that the mapping class group of S is exact.
Potentialists think that the concept of set is importantly modal. Using tensed language as a heuristic, the following bare-bones story introduces the idea of a potential hierarchy of sets: ‘Always: for any sets that existed, there is a set whose members are exactly those sets; there are no other sets’. Surprisingly, this story already guarantees well-foundedness and persistence. Moreover, if we assume that time is linear, the ensuing modal set theory is almost definitionally equivalent with non-modal set theories; specifically, with Level Theory, as developed in Part 1.
On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and a natural extension of BLT is definitionally equivalent with ZF.
Here, I combine the semantics of Mares and Goldblatt [20] and Seki [29, 30] to develop a semantics for quantified modal relevant logics extending ${\bf B}$. The combination requires demonstrating that the Mares–Goldblatt approach is apt for quantified extensions of ${\bf B}$ and other relevant logics, but no significant bridging principles are needed. The result is a single semantic approach for quantified modal relevant logics. Within this framework, I discuss the requirements a quantified modal relevant logic must satisfy to be “sufficiently classical” in its modal fragment, where frame conditions are given that work for positive fragments of logics. The roles of the Barcan formula and its converse are also investigated.
We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice of finitary antiaxiomatic extensions of Belnap–Dunn logic is isomorphic to the lattice of upsets in the homomorphism order on finite graphs (with loops allowed). In particular, there is a continuum of finitary super-Belnap logics. Moreover, a non-finitary super-Belnap logic can be constructed with the help of this isomorphism. As algebraic corollaries we obtain the existence of a continuum of antivarieties of De Morgan algebras and the existence of a prevariety of De Morgan algebras which is not a quasivariety.
Since Kripke, philosophers have distinguished a priori true statements from necessarily true ones. A statement is a priori true if its truth can be established before experience, and necessarily true if it could not have been false according to logical or metaphysical laws. This distinction can be captured formally using two-dimensional semantics.
There is a natural way to extend the notions of apriority and necessity so they can also apply to questions. Questions either can or cannot be resolved before experience, and either are or are not about necessary facts. Classical two-dimensionalism has no account of question meanings, so it has to be combined with a framework for question semantics in order to capture these observations. It is shown in [14] how two-dimensional semantics can be combined with inquisitive semantics, in which questions are analyzed in terms of information. The present paper investigates the logic of two-dimensional inquisitive semantics, and provides a complete proof system.
The injective version of Cantor’s theorem appears in full second-order logic as the inconsistency of the abstraction principle, Frege’s Basic Law V (BLV), an inconsistency easily shown using Russell’s paradox. This incompatibility is akin to others—most notably that of a (Dedekind) infinite universe with the Nuisance Principle (NP) discussed by neo-Fregean philosophers of mathematics. This paper uses the Burali–Forti paradox to demonstrate this incompatibility, and another closely related, without appeal to principles related to the axiom of choice—a result hitherto unestablished. It discusses both the general interest of this result, its interest to neo-Fregean philosophy of mathematics, and the potential significance of the Burali–Fortian method of proof.
Inquisitive first-order logic, InqBQ, is a system which extends classical first-order logic with formulas expressing questions. From a mathematical point of view, formulas in this logic express properties of sets of relational structures. This paper makes two contributions to the study of this logic. First, we describe an Ehrenfeucht–Fraïssé game for InqBQ and show that it characterizes the distinguishing power of the logic. Second, we use the game to study cardinality quantifiers in the inquisitive setting. That is, we study what statements and questions can be expressed in InqBQ about the number of individuals satisfying a given predicate. As special cases, we show that several variants of the question how many individuals satisfy$\alpha (x)$ are not expressible in InqBQ, both in the general case and in restriction to finite models.
We present a Zermelo–Fraenkel ($\textbf {ZF}$) consistency result regarding bi-orderability of groups. A classical consequence of the ultrafilter lemma is that a group is bi-orderable if and only if it is locally bi-orderable. We show that there exists a model of $\textbf {ZF}$ plus dependent choice in which there is a group which is locally free (ergo locally bi-orderable) and not bi-orderable, and the group can be given a total order. The model also includes a torsion-free abelian group which is not bi-orderable but can be given a total order.
A notion of strictly primitive recursive realizability is introduced by Damnjanovic in 1994. It is a kind of constructive semantics of the arithmetical sentences using primitive recursive functions. It is of interest to study the corresponding predicate logic. It was argued by Park in 2003 that the predicate logic of strictly primitive recursive realizability is not arithmetical. Park’s argument is essentially based on a claim of Damnjanovic that intuitionistic logic is sound with respect to strictly primitive recursive realizability, but that claim was disproved by the author of this article in 2006. The aim of this paper is to present a correct proof of the result of Park.
Anderson and Belnap presented indexed Fitch-style natural deduction systems for the relevant logics R, E, and T. This work was extended by Brady to cover a range of relevant logics. In this paper I present indexed tree natural deduction systems for the Anderson–Belnap–Brady systems and show how to translate proofs in one format into proofs in the other, which establishes the adequacy of the tree systems.
We introduceand study anatural class of fields in which certain first-order definable sets are existentially definable, and characterise this class by a number of equivalent conditions. Weshow that global fields belong to this class, and in particular obtain a number of new existential (or diophantine) predicates over global fields.
Questions concerning the proof-theoretic strength of classical versus nonclassical theories of truth have received some attention recently. A particularly convenient case study concerns classical and nonclassical axiomatizations of fixed-point semantics. It is known that nonclassical axiomatizations in four- or three-valued logics are substantially weaker than their classical counterparts. In this paper we consider the addition of a suitable conditional to First-Degree Entailment—a logic recently studied by Hannes Leitgeb under the label HYPE. We show in particular that, by formulating the theory PKF over HYPE, one obtains a theory that is sound with respect to fixed-point models, while being proof-theoretically on a par with its classical counterpart KF. Moreover, we establish that also its schematic extension—in the sense of Feferman—is as strong as the schematic extension of KF, thus matching the strength of predicative analysis.
In 1978, Yu. F. Borisov presented an axiom system using a few basic assumptions and four explicit axioms, the fourth being a formulation of the relativity principle, and he demonstrated that this axiom system had (up to choice of units) only two models: a relativistic one in which worldview transformations are Poincaré transformations and a classical one in which they are Galilean. In this paper, we reformulate Borisov’s original four axioms within an intuitively simple, but strictly formal, first-order logic framework, and convert his basic background assumptions into explicit axioms. Instead of assuming that the structure of physical quantities is the field of real numbers, we assume only that they form an ordered field. This allows us to investigate how Borisov’s theorem depends on the structure of quantities.
We demonstrate (as our main contribution) how to construct Euclidean, Galilean, and Poincaré models of Borisov’s axiom system over every non-Archimedean field. We also demonstrate the existence of an infinite descending chain of models and transformation groups in each of these three cases, something that is not possible over Archimedean fields.
As an application, we note that there is a model of Borisov’s axioms that satisfies the relativity principle, and in which the worldview transformations are Euclidean isometries. Over the field of reals it is easy to eliminate this model using natural axioms concerning time’s arrow and the absence of instantaneous motion. In the case of non-Archimedean fields, however, the Euclidean isometries appear intrinsically as worldview transformations in models of Borisov’s axioms, and neither the assumption of time’s arrow, nor the rejection of instantaneous motion, can eliminate them.
A thriving literature has developed over logical and mathematical pluralism – i.e. the views that several rival logical and mathematical theories can be equally correct. These have unfortunately grown separate; instead, they both could gain a great deal by a closer interaction. Our aim is thus to present some novel forms of abstractionist mathematical pluralism which can be modeled on parallel ways of substantiating logical pluralism (also in connection with logical anti-exceptionalism). To do this, we start by discussing the Good Company Problem for neo-logicists recently raised by Paolo Mancosu (2016), concerning the existence of rival abstractive definitions of cardinal number which are nonetheless equally able to reconstruct Peano Arithmetic. We survey Mancosu’s envisaged possible replies to this predicament, and suggest as a further path the adoption of some form of mathematical pluralism concerning abstraction principles. We then explore three possible ways of substantiating such pluralism—Conceptual Pluralism, Domain Pluralism, Pluralism about Criteria—showing how each of them can be related to analogous proposals in the philosophy of logic. We conclude by considering advantages, concerns, and theoretical ramifications for these varieties of mathematical pluralism.
Recently, a connection has been established between two branches of computability theory, namely between algorithmic randomness and algorithmic learning theory. Learning-theoretical characterizations of several notions of randomness were discovered. We study such characterizations based on the asymptotic density of positive answers. In particular, this note provides a new learning-theoretic definition of weak 2-randomness, solving the problem posed by (Zaffora Blando, Rev. Symb. Log. 2019). The note also highlights the close connection between these characterizations and the problem of convergence on random sequences.
In this paper we extend to non-classical set theories the standard strategy of proving independence using Boolean-valued models. This extension is provided by means of a new technique that, combining algebras (by taking their product), is able to provide product-algebra-valued models of set theories. In this paper we also provide applications of this new technique by showing that: (1) we can import the classical independence results to non-classical set theory (as an example we prove the independence of $\mathsf {CH}$); and (2) we can provide new independence results. We end by discussing the role of non-classical algebra-valued models for the debate between universists and multiversists and by arguing that non-classical models should be included as legitimate members of the multiverse.
As a new type of epistemic logics, the logics of knowing how capture the high-level epistemic reasoning about the knowledge of various plans to achieve certain goals. Existing work on these logics focuses on axiomatizations; this paper makes the first study of their model theoretical properties. It does so by introducing suitable notions of bisimulation for a family of five knowing how logics based on different notions of plans. As an application, we study and compare the expressive power of these logics.
The Quantified argument calculus (Quarc) has received a lot of attention recently as an interesting system of quantified logic which eschews the use of variables and unrestricted quantification, but nonetheless achieves results similar to the Predicate calculus (PC) by employing quantifiers applied directly to predicates instead. Despite this noted similarity, the issue of the relationship between Quarc and PC has so far not been definitively resolved. We address this question in the present paper, and then expand upon that result.
Utilizing recent developments in structural proof theory, we develop a G3-style sequent calculus for Quarc and briefly demonstrate its structural properties. We put these properties to use immediately to construct direct proofs of the meta-theoretical properties of the system. We then incorporate an abstract (and, as we shall see, logical) predicate into the system in a way that preserves all the structural properties. This allows us to identify a system of Quarc which is deductively equivalent to PC, and also yields a constructive method of demonstrating the Craig interpolation theorem (which speaks in favor of the aforementioned predicate being logical). We further generalize this extension to develop a bivalent system of Quarc with defining clauses that still maintains all the desirable properties of a good proof system.