We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For each $n\geq 1$, let $FT_n$ be the free tree monoid of rank n and $E_n$ the full extensive transformation monoid over the finite chain $\{1, 2, \ldots , n\}$. It is shown that the monoids $FT_n$ and $E_{n+1}$ satisfy the same identities. Therefore, $FT_n$ is finitely based if and only if $n\leq 3$.
We study infinite groups interpretable in power bounded T-convex, V-minimal or p-adically closed fields. We show that if G is an interpretable definably semisimple group (i.e., has no definable infinite normal abelian subgroups) then, up to a finite index subgroup, it is definably isogenous to a group $G_1\times G_2$, where $G_1$ is a K-linear group and $G_2$ is a $\mathbf {k}$-linear group. The analysis is carried out by studying the interaction of G with four distinguished sorts: the valued field K, the residue field $\mathbf {k}$, the value group $\Gamma $, and the closed $0$-balls $K/\mathcal {O}$.
Following [1], given cardinals $\kappa <\lambda $, we say $\kappa $ is a club $\lambda $-Berkeley cardinal if for every transitive set N of size $<\lambda $ such that $\kappa \subseteq N$, there is a club $C\subseteq \kappa $ with the property that for every $\eta \in C$, there is an elementary embedding $j: N\rightarrow N$ with $\mathrm {crit }(j)=\eta $. We say $\kappa $ is $\nu $-club $\lambda $-Berkeley if $C\subseteq \kappa $ as above is a $\nu $-club. We say $\kappa $ is $\lambda $-Berkeley if C is unbounded in $\kappa $. We show that under $\textsf {AD}^{+}$, (1) every regular Suslin cardinal is $\omega $-club $\Theta $-Berkeley (see Theorem 7.1), (2) $\omega _1$ is club $\Theta $-Berkeley (see Theorem 3.1 and Theorem 7.1), and (3) the ’s are $\Theta $-Berkeley – in particular, $\omega _2$ is $\Theta $-Berkeley (see Remark 7.5).
Along the way, we represent regular Suslin cardinals in direct limits as cutpoint cardinals (see Theorem 5.1). This topic has been studied in [31] and [4], albeit from a different point of view. We also show that, assuming $V=L({\mathbb {R}})+{\textsf {AD}}$, $\omega _1$ is not $\Theta ^+$-Berkeley, so the result stated in the title is optimal (see Theorem 9.14 and Theorem 9.19).
We prove two compactness theorems for HOD. First, if $\kappa $ is a strong limit singular cardinal with uncountable cofinality and for stationarily many $\delta <\kappa $, $(\delta ^+)^{\mathrm {HOD}}=\delta ^+$, then $(\kappa ^+)^{\mathrm {HOD}}=\kappa ^+$. Second, if $\kappa $ is a singular cardinal with uncountable cofinality and stationarily many $\delta <\kappa $ are singular in $\operatorname {\mathrm {HOD}}$, then $\kappa $ is singular in $\operatorname {\mathrm {HOD}}$. We also discuss the optimality of these results and show that the first theorem does not extend from $\operatorname {\mathrm {HOD}}$ to other $\omega $-club amenable inner models.
The family of relevant logics can be faceted by a hierarchy of increasingly fine-grained variable sharing properties—requiring that in valid entailments $A\to B$, some atom must appear in both A and B with some additional condition (e.g., with the same sign or nested within the same number of conditionals). In this paper, we consider an incredibly strong variable sharing property of lericone relevance that takes into account the path of negations and conditionals in which an atom appears in the parse trees of the antecedent and consequent. We show that this property of lericone relevance holds of the relevant logic $\mathbf {BM}$ (and that a related property of faithful lericone relevance holds of $\mathbf {B}$) and characterize the largest fragments of classical logic with these properties. Along the way, we consider the consequences for lericone relevance for the theory of subject-matter, for Logan’s notion of hyperformalism, and for the very definition of a relevant logic itself.
In previous publications, it was shown that finite non-deterministic matrices are quite powerful in providing semantics for a large class of normal and non-normal modal logics. However, some modal logics, such as those whose axiom systems contained the Löb axiom or the McKinsey formula, were not analyzed via non-deterministic semantics. Furthermore, other modal rules than the rule of necessitation were not yet characterized in the framework.
In this paper, we will overcome this shortcoming and present a novel approach for constructing semantics for normal and non-normal modal logics that is based on restricted non-deterministic matrices. This approach not only offers a uniform semantical framework for modal logics, while keeping the interpretation of the involved modal operators the same, and thus making different systems of modal logic comparable. It might also lead to a new understanding of the concept of modality.
We provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal {M}$ is never model complete if its direct integral decomposition contains $\mathrm {II}_1$ factors $\mathcal {N}$ such that $M_2(\mathcal {N})$ embeds into an ultrapower of $\mathcal {N}$. The proof in the case of $\mathrm {II}_1$ factors uses an explicit construction based on random matrices and quantum expanders.
We prove an analog of the disintegration theorem for tracial von Neumann algebras in the setting of elementary equivalence rather than isomorphism, showing that elementary equivalence of two direct integrals of tracial factors implies fiberwise elementary equivalence under mild, and necessary, hypotheses. This verifies a conjecture of Farah and Ghasemi. Our argument uses a continuous analog of ultraproducts where an ultrafilter on a discrete index set is replaced by a character on a commutative von Neumann algebra, which is closely related to Keisler randomizations of metric structures. We extend several essential results on ultraproducts, such as Łoś’s theorem and countable saturation, to this more general setting.
The consistency of the theory $\mathsf {ZF} + \mathsf {AD}_{\mathbb {R}} + {}$‘every set of reals is universally Baire’ is proved relative to $\mathsf {ZFC} + {}$‘there is a cardinal that is a limit of Woodin cardinals and of strong cardinals’. The proof is based on the derived model construction, which was used by Woodin to show that the theory $\mathsf {ZF} + \mathsf {AD}_{\mathbb {R}} + {}$‘every set of reals is Suslin’ is consistent relative to $\mathsf {ZFC} + {}$‘there is a cardinal $\lambda $ that is a limit of Woodin cardinals and of $\mathord {<}\lambda $-strong cardinals’. The $\Sigma ^2_1$ reflection property of our model is proved using genericity iterations as in Neeman [18] and Steel [22].
Assuming the Generalized Continuum hypothesis, this paper answers the question: when is the tensor product of two ultrafilters equal to their Cartesian product? It is necessary and sufficient that their Cartesian product is an ultrafilter; that the two ultrafilters commute in the tensor product; that for all cardinals $\lambda $, one of the ultrafilters is both $\lambda $-indecomposable and $\lambda ^+$-indecomposable; that the ultrapower embedding associated with each ultrafilter restricts to a definable embedding of the ultrapower of the universe associated with the other.
In 1967, Gerencsér and Gyárfás [16] proved a result which is considered the starting point of graph-Ramsey theory: In every 2-coloring of $K_n$, there is a monochromatic path on $\lceil (2n+1)/3\rceil $ vertices, and this is best possible. There have since been hundreds of papers on graph-Ramsey theory with some of the most important results being motivated by a series of conjectures of Burr and Erdős [2, 3] regarding the Ramsey numbers of trees (settled in [31]), graphs with bounded maximum degree (settled in [5]), and graphs with bounded degeneracy (settled in [23]).
In 1993, Erdős and Galvin [13] began the investigation of a countably infinite analogue of the Gerencsér and Gyárfás result: What is the largest d such that in every $2$-coloring of $K_{\mathbb {N}}$ there is a monochromatic infinite path with upper density at least d? Erdős and Galvin showed that $2/3\leq d\leq 8/9$, and after a series of recent improvements, this problem was finally solved in [7] where it was shown that $d={(12+\sqrt {8})}/{17}$.
This paper begins a systematic study of quantitative countably infinite graph-Ramsey theory, focusing on infinite analogues of the Burr-Erdős conjectures. We obtain some results which are analogous to what is known in finite case, and other (unexpected) results which have no analogue in the finite case.
We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
Next, we focus on finite echeloned spaces. They form a Fraïssé class, and we describe its Fraïssé-limit both as the echeloned space induced by a certain homogeneous metric space and as the result of a random construction. Building on this, we show that the class of finite ordered echeloned spaces is Ramsey. The proof of this result combines a combinatorial argument by Nešetřil and Hubička with a topological-dynamical point of view due to Kechris, Pestov and Todorčević. Finally, using the method of Katětov functors due to Kubiś and Mašulović, we prove that the full symmetric group on a countable set topologically embeds into the automorphism group of the countable universal homogeneous echeloned space.
Clans are categorical representations of generalized algebraic theories that contain more information than the finite-limit categories associated to the locally finitely presentable categories of models via Gabriel–Ulmer duality. Extending Gabriel–Ulmer duality to account for this additional information, we present a duality theory between clans and locally finitely presentable categories equipped with a weak factorization system of a certain kind.
We prove that the class of separably algebraically closed valued fields equipped with a distinguished Frobenius endomorphism $x \mapsto x^q$ is decidable, uniformly in q. The result is a simultaneous generalization of the work of Chatzidakis and Hrushovski (in the case of the trivial valuation) and the work of the first author and Hrushovski (in the case where the fields are algebraically closed).
The logical setting for the proof is a model completeness result for valued fields equipped with an endomorphism $\sigma $ which is locally infinitely contracting and fails to be onto. Namely, we prove the existence of a model complete theory $\widetilde {\mathrm {VFE}}$ amalgamating the theories $\mathrm {SCFE}$ and $\widetilde {\mathrm {VFA}}$ introduced in [5] and [11], respectively. In characteristic zero, we also prove that $\widetilde {\mathrm {VFE}}$ is NTP$_2$ and classify the stationary types: they are precisely those orthogonal to the fixed field and the value group.
It is shown that if $\{H_n\}_{n \in \omega}$ is a sequence of groups without involutions, with $1 \lt |H_n| \leq 2^{\aleph_0}$, then the topologist’s product modulo the finite words is (up to isomorphism) independent of the choice of sequence. This contrasts with the abelian setting: if $\{A_n\}_{n \in \omega}$ is a sequence of countably infinite torsion-free abelian groups, then the isomorphism class of the product modulo sum $\prod_{n \in \omega} A_n/\bigoplus_{n \in \omega} A_n$ is dependent on the sequence.
We define several notions of a limit point on sequences with domain a barrier in $[\omega ]^{<\omega }$ focusing on the two dimensional case $[\omega ]^2$. By exploring some natural candidates, we show that countable compactness has a number of generalizations in terms of limits of high dimensional sequences and define a particular notion of $\alpha $-countable compactness for $\alpha \leq \omega _1$. We then focus on dimension 2 and compare 2-countable compactness with notions previously studied in the literature. We present a number of counterexamples showing that these classes are different. In particular assuming the existence of a Ramsey ultrafilter, a subspace of $\beta \omega $ which is doubly countably compact whose square is not countably compact, answering a question of T. Banakh, S. Dimitrova, and O. Gutik [3]. The analysis of this construction leads to some possibly new types of ultrafilters related to discrete, P-points and Ramsey ultrafilters.
It is consistent relative to an inaccessible cardinal that ZF+DC holds, the hypergraph of equilateral triangles on a given Euclidean space has countable chromatic number, while the hypergraph of isosceles triangles on $\mathbb {R}^2$ does not.
Building on our previous work on enriched universal algebra, we define a notion of enriched language consisting of function and relation symbols whose arities are objects of the base of enrichment $\mathcal {V}$. In this context, we construct atomic formulas and define the regular fragment of our enriched logic by taking conjunctions and existential quantification of those. We then characterize $\mathcal {V}$-categories of models of regular theories as enriched injectivity classes in the $\mathcal {V}$-category of structures. These notions rely on the choice of an orthogonal factorization system $(\mathcal {E},\mathcal {M})$ on $\mathcal {V}$ which will be used, in particular, to interpret relation symbols and existential quantification.
We study the descriptive complexity of sets of points defined by restricting the statistical behaviour of their orbits in dynamical systems on Polish spaces. Particular examples of such sets are the sets of generic points of invariant Borel probability measures, but we also consider much more general sets (for example, $\alpha $-Birkhoff regular sets and the irregular set appearing in the multifractal analysis of ergodic averages of a continuous real-valued function). We show that many of these sets are Borel in general, and all these are Borel when we assume that our space is compact. We provide examples of these sets being non-Borel, properly placed at the first level of the projective hierarchy (they are complete analytic or co-analytic). This proves that the compactness assumption is, in some cases, necessary to obtain Borelness. When these sets are Borel, we measure their descriptive complexity using the Borel hierarchy. We show that the sets of interest are located at most at the third level of the hierarchy. We also use a modified version of the specification property to show that these sets are properly located at the third level of the hierarchy for many dynamical systems. To demonstrate that the specification property is a sufficient, but not necessary, condition for maximal descriptive complexity of a set of generic points, we provide an example of a compact minimal system with an invariant measure whose set of generic points is $\boldsymbol {\Pi }^0_3$-complete.