We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In $\mathsf {ZF}$ (i.e., Zermelo–Fraenkel set theory minus the axiom of choice ($\mathsf {AC}$)), we investigate the open problem of the deductive strength of the principle
UFwob(ω): “There exists a free ultrafilter on ω with a well-orderable base”,
which was introduced by Herzberg, Kanovei, Katz, and Lyubetsky [(2018), Journal of Symbolic Logic, 83(1), 385–391]. Typical results are:
(1) “$\aleph _{1}\leq 2^{\aleph _{0}}$” is strictly weaker than $\mathsf {UF_{wob}}(\omega )$ in $\mathsf {ZF}$.
(2) “There exists a free ultrafilter on $\omega $” does not imply “$\aleph _{1}\leq 2^{\aleph _{0}}$” in $\mathsf {ZF}$, and thus (by (1)) neither does it imply $\mathsf {UF_{wob}}(\omega )$ in $\mathsf {ZF}$. This fills the gap in information in Howard and Rubin [Mathematical Surveys and Monographs, American Mathematical Society, 1998], as well as in Herzberg et al. (2018).
(3) Martin’s Axiom ($\mathsf {MA}$) implies “no free ultrafilter on $\omega $ has a well-orderable base of cardinality $<2^{\aleph _{0}}$”, and the latter principle is not implied by $\aleph _{0}$-Martin’s Axiom ($\mathsf {MA}(\aleph _{0})$) in $\mathsf {ZF}$.
(4)$\mathsf {MA} + \mathsf {UF_{wob}}(\omega )$ implies $\mathsf {AC}(\mathbb {R})$ (the axiom of choice for non-empty sets of reals), which in turn implies $\mathsf {UF_{wob}}(\omega )$. Furthermore, $\mathsf {MA}$ and $\mathsf {UF_{wob}}(\omega )$ are mutually independent in $\mathsf {ZF}$.
(5) For any infinite linearly orderable set X, each of “every filter base on X can be well ordered” and “every filter on X has a well-orderable base” is equivalent to “$\wp (X)$ can be well ordered”. This yields novel characterizations of the principle “every linearly ordered set can be well ordered” in $\mathsf {ZFA}$ (i.e., Zermelo–Fraenkel set theory with atoms), and of $\mathsf {AC}$ in $\mathsf {ZF}$.
(6) “Every filter on $\mathbb {R}$ has a well-orderable base” implies “every filter on $\omega $ has a well-orderable base”, which in turn implies $\mathsf {UF_{wob}}(\omega )$, and none of these implications are reversible in $\mathsf {ZF}$.
(7) “Every filter on $\omega $ can be extended to an ultrafilter with a well-orderable base” is equivalent to $\mathsf {AC}(\mathbb {R}),$ and thus is strictly stronger than $\mathsf {UF_{wob}}(\omega )$ in $\mathsf {ZF}$.
(8) “Every filter on $\omega $ can be extended to an ultrafilter” implies “there exists a free ultrafilter on $\omega $ which has no well-orderable base of cardinality ${<2^{\aleph _{0}}}$”. The former principle does not imply “there exists a free ultrafilter on $\omega $ which has no well-orderable base” in $\mathsf {ZF}$, and the latter principle is true in the Basic Cohen Model.
In this article, we propose a new classification of $\Sigma ^0_2$ formulas under the realizability interpretation of many-one reducibility (i.e., Levin reducibility). For example, $\mathsf {Fin}$, the decision of being eventually zero for sequences, is many-one/Levin complete among $\Sigma ^0_2$ formulas of the form $\exists n\forall m\geq n.\varphi (m,x)$, where $\varphi $ is decidable. The decision of boundedness for sequences $\mathsf {BddSeq}$ and for width of posets $\mathsf {FinWidth}$ are many-one/Levin complete among $\Sigma ^0_2$ formulas of the form $\exists n\forall m\geq n\forall k.\varphi (m,k,x)$, where $\varphi $ is decidable. However, unlike the classical many-one reducibility, none of the above is $\Sigma ^0_2$-complete. The decision of non-density of linear orders $\mathsf {NonDense}$ is truly $\Sigma ^0_2$-complete.
Lyubetsky and Kanovei showed in [8] that there is a second-order arithmetic model of $\mathrm {Z}_2^{-p}$, (comprehension for all second-order formulas without parameters), in which $\Sigma ^1_2$-$\mathrm {CA}$ (comprehension for all $\Sigma ^1_2$-formulas with parameters) holds, but $\Sigma ^1_4$-$\mathrm {CA}$ fails. They asked whether there is a model of $\mathrm {Z}_2^{-p}+\Sigma ^1_2$-$\mathrm {CA}$ with the optimal failure of $\Sigma ^1_3$-$\mathrm {CA}$. We answer the question positively by constructing such a model in a forcing extension by a tree iteration of Jensen’s forcing. Let $\mathrm {Coll}^{-p}$ be the parameter-free collection scheme for second-order formulas and let $\mathrm {AC}^{-p}$ be the parameter-free choice scheme. We show that there is a model of $\mathrm {Z}_2^{-p}+\mathrm { AC}^{-p}+\Sigma ^1_2$-$\mathrm {CA}$ with a failure of $\Sigma ^1_4$-$\mathrm {CA}$. We also show that there is a model of $\mathrm {Z}_2^{-p}+\mathrm {Coll}^{-p}+\Sigma ^1_2$-$\mathrm {CA}$ with a failure of $\Sigma ^1_4$-$\mathrm {CA}$ and a failure of $\mathrm {AC}^{-p}$, so that, in particular, the schemes $\mathrm {Coll}^{-p}$ and $\mathrm {AC}^{-p}$ are not equivalent over $\mathrm {Z}_2^{-p}$.
We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion.
We contribute to the study of generalizations of the Perfect Set Property and the Baire Property to subsets of spaces of higher cardinalities, like the power set ${\mathcal {P}}({\lambda })$ of a singular cardinal $\lambda $ of countable cofinality or products $\prod _{i<\omega }\lambda _i$ for a strictly increasing sequence $\langle {\lambda _i}~\vert ~{i<\omega }\rangle $ of cardinals. We consider the question under which large cardinal hypothesis classes of definable subsets of these spaces possess such regularity properties, focusing on rank-into-rank axioms and classes of sets definable by $\Sigma _1$-formulas with parameters from various collections of sets. We prove that $\omega $-many measurable cardinals, while sufficient to prove the perfect set property of all $\Sigma _1$-definable sets with parameters in $V_\lambda \cup \{V_\lambda \}$, are not enough to prove it if there is a cofinal sequence in $\lambda $ in the parameters. For this conclusion, the existence of an I2-embedding is enough, but there are parameters in $V_{\lambda +1}$ for which I2 is still not enough. The situation is similar for the Baire property: under I2 all sets that are $\Sigma _1$-definable using elements of $V_\lambda $ and a cofinal sequence as parameters have the Baire property, but I2 is not enough for some parameter in $V_{\lambda +1}$. Finally, the existence of an I0-embedding implies that all sets that are $\Sigma ^1_n$-definable with parameters in $V_{\lambda +1}$ have the Baire property.
On relational structures and on polymodal logics, we describe operations which preserve local tabularity. This provides new sufficient semantic and axiomatic conditions for local tabularity of a modal logic. The main results are the following.
We show that local tabularity does not depend on reflexivity. Namely, given a class $\mathcal {F}$ of frames, consider the class $\mathcal {F}^{\mathrm {r}}$ of frames, where the reflexive closure operation was applied to each relation in every frame in $\mathcal {F}$. We show that if the logic of $\mathcal {F}^{\mathrm {r}}$ is locally tabular, then the logic of $\mathcal {F}$ is locally tabular as well.
Then we consider the operation of sum on Kripke frames, where a family of frames-summands is indexed by elements of another frame. We show that if both the logic of indices and the logic of summands are locally tabular, then the logic of corresponding sums is also locally tabular.
Finally, using the previous theorem, we describe an operation on logics that preserves local tabularity: we provide a set of formulas such that the extension of the fusion of two canonical locally tabular logics with these formulas is locally tabular.
This paper continues the program connecting reverse mathematics and computable analysis via the framework of Weihrauch reducibility. In particular, we consider problems related to perfect subsets of Polish spaces, studying the perfect set theorem, the Cantor–Bendixson theorem, and various problems arising from them. In the framework of reverse mathematics, these theorems are equivalent, respectively, to $\mathsf {ATR}_0$ and $\boldsymbol {\Pi }^1_1{-}\mathsf{CA}_0$, the two strongest subsystems of second order arithmetic among the so-called big five. As far as we know, this is the first systematic study of problems at the level of $\boldsymbol {\Pi }^1_1{-}\mathsf{CA}_0$ in the Weihrauch lattice. We show that the strength of some of the problems we study depends on the topological properties of the Polish space under consideration, while others have the same strength once the space is rich enough.
This paper studies the conjecture of Hirschfeldt, Miller, and Podzorov in [13] on the complexity of order-computable sets, where a set A is order-computable if there is a computable copy of the structure $(\mathbb {N}, <,A)$ in the language of linear orders together with a unary predicate. The class of order-computable sets forms a subclass of $\Delta ^{0}_{2}$ sets. Firstly, we study the complexity of computably enumerable (c.e.) order-computable sets and prove that the index set of c.e. order-computable sets is $\Sigma ^{0}_{4}$-complete. Secondly, as a corollary of the main result on c.e. order-computable sets, we obtain that the index set of general order computable sets is $\Sigma ^{0}_{4}$-complete within the index set of $\Delta ^{0}_{2}$ sets. Finally, we continue to study the complexity of more general $\Delta ^{0}_{2}$ sets and prove that the index set of $\Delta ^{0}_{2}$ sets is $\Pi ^{0}_{3}$-complete.
We present a streamlined and simplified exponential lower bound on the length of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler’s dag-like natural deduction.
We explore the interplay between $\omega $-categoricity and pseudofiniteness for groups, and we conjecture that $\omega $-categorical pseudofinite groups are finite-by-abelian-by-finite. We show that the conjecture reduces to nilpotent p-groups of class 2, and give a proof that several of the known examples of $\omega $-categorical p-groups satisfy the conjecture. In particular, we show by a direct counting argument that for any odd prime p the ($\omega $-categorical) model companion of the theory of nilpotent class 2 exponent p groups, constructed by Saracino and Wood, is not pseudofinite, and that an $\omega $-categorical group constructed by Baudisch with supersimple rank 1 theory is not pseudofinite. We also survey some scattered literature on $\omega $-categorical groups over 50 years.
Definable stationary sets, and specifically, ordinal definable ones, play a significant role in the study of canonical inner models of set theory and the class HOD of hereditarily ordinal definable sets. Fixing a certain notion of definability and an uncountable cardinal, one can consider the associated family of definable closed unbounded sets. In this paper, we study the extent to which such families can approximate the full closed unbounded filter and their dependence on the defining complexity. Focusing on closed unbounded subsets of a cardinal $\kappa $ which are $\Sigma _1$-definable in parameters from H${}_\kappa $ and ordinal parameters, we show that the ability of such closed unbounded sets to well approximate the closed unbounded filter on $\kappa $ can highly vary and strongly depends on key properties of the underlying universe of set theory.
The logico-algebraic study of Lewis’s hierarchy of variably strict conditional logics has been essentially unexplored, hindering our understanding of their mathematical foundations, and the connections with other logical systems. This work starts filling this gap by providing a logico-algebraic analysis of Lewis’s logics. We begin by introducing novel finite axiomatizations for Lewis’s logics on the syntactic side, distinguishing between global and local consequence relations on Lewisian sphere models on the semantical side, in parallel to the case of modal logic. As first main results, we prove the strong completeness of the calculi with respect to the corresponding semantical consequence on spheres, and a deduction theorem. We then demonstrate that the global calculi are strongly algebraizable in terms of a variety of Boolean algebras with a binary operator representing the counterfactual implication; in contrast, we show that the local ones are generally not algebraizable, although they can be characterized as the degree-preserving logic over the same algebraic models. This yields the strong completeness of all the logics with respect to the algebraic models.
We investigate the tower spectrum in the generalized Baire space, i.e., the set of lengths of towers in $\kappa ^\kappa $. We show that both small and large tower spectra at all regular cardinals simultaneously are consistent. Furthermore, based on previous work by Bağ, the first author and Friedman, we prove that globally, a small tower spectrum is consistent with an arbitrarily large spectrum of maximal almost disjoint families. Finally, we show that any non-trivial upper bound on the tower spectrum in $\kappa ^\kappa $ is consistent.
In [15] we defined and proved the consistency of the principle $\mathrm {GM}^+(\omega _3,\omega _1)$ which implies that many consequences of strong forcing axioms hold simultaneously at $\omega _2$ and $\omega _3$. In this paper we formulate a strengthening of $\mathrm {GM}^+(\omega _3,\omega _1)$ that we call $\mathrm {SGM}^+(\omega _3,\omega _1)$. We also prove, modulo the consistency of two supercompact cardinals, that $\mathrm {SGM}^+(\omega _3,\omega _1)$ is consistent with ZFC. In addition to all the consequences of $\mathrm {GM}^+(\omega _3,\omega _1)$, the principle $\mathrm {SGM}^+(\omega _3,\omega _1)$, together with some mild cardinal arithmetic assumptions that hold in our model, implies that any forcing that adds a new subset of $\omega _2$ either adds a real or collapses some cardinal. This gives a partial answer to a question of Abraham [1] and extends a previous result of Todorčević [16] in this direction.
Condensed mathematics, developed by Clausen and Scholze over the last few years, proposes a generalization of topology with better categorical properties. It replaces the concept of a topological space by that of a condensed set, which can be defined as a sheaf for the coherent topology on a certain category of compact Hausdorff spaces. In this case, the sheaf condition has a fairly simple explicit description, which arises from studying the relationship between the coherent, regular, and extensive topologies. In this paper, we establish this relationship under minimal assumptions on the category, going beyond the case of compact Hausdorff spaces. Along the way, we also provide a characterization of sheaves and covering sieves for these categories. All results in this paper have been fully formalized in the Lean proof assistant.
The generic multiverse was introduced in [74] and [81] to explicate the portion of mathematics which is immune to our independence techniques. It consists, roughly speaking, of all universes of sets obtainable from a given universe by forcing extension. Usuba recently showed that the generic multiverse contains a unique definable universe, assuming strong large cardinal hypotheses. On the basis of this theorem, a non-pluralist about set theory could dismiss the generic multiverse as irrelevant to what set theory is really about, namely that unique definable universe. Whatever one’s attitude towards the generic multiverse, we argue that certain impure proofs ensure its ongoing relevance to the foundations of set theory. The proofs use forcing-fragile theories and absoluteness to prove ${\mathrm {ZFC}}$ theorems about simple “concrete” objects.
The distinction between the proofs that only certify the truth of their conclusion and those that also display the reasons why their conclusion holds has a long philosophical history. In the contemporary literature, the grounding relation—an objective, explanatory relation which is tightly connected with the notion of reason—is receiving considerable attention in several fields of philosophy. While much work is being devoted to characterising logical grounding in terms of deduction rules, no in-depth study focusing on the difference between grounding rules and logical rules exists. In this work, we analyse the relation between logical grounding and classical logic by focusing on the technical and conceptual differences that distinguish grounding rules and logical rules. The calculus employed to conduct the analysis provides moreover a strong confirmation of the fact that grounding derivations are logical derivations of a certain kind, without trivialising the distinction between grounding and logical rules, explanatory and non-explanatory parts of a derivation. By a further formal analysis, we negatively answer the question concerning the possible correspondence between grounding rules and intuitionistic logical rules.
Structural convergence is a framework for the convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs $(G_n)$ converging to a limit $L$ and a vertex $r$ of $L$, it is possible to find a sequence of vertices $(r_n)$ such that $L$ rooted at $r$ is the limit of the graphs $G_n$ rooted at $r_n$. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices $r$ of $L$. We offer another perspective on the original problem by considering the size of definable sets to which the root $r$ belongs. We prove that if $r$ is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots $(r_n)$ always exists.
It is a classic result of Segerberg and Maksimova that a variety of $\mathsf {S4}$-algebras is locally finite iff it is of finite depth. Since the logic $\mathsf {MS4}$ (monadic $\mathsf {S4}$) axiomatizes the one-variable fragment of $\mathsf {QS4}$ (predicate $\mathsf {S4}$), it is natural to try to generalize the Segerberg–Maksimova theorem to this setting. We obtain several results in this direction. Our positive results include the identification of the largest semisimple variety of $\mathsf {MS4}$-algebras. We prove that the corresponding logic $\mathsf {MS4_S}$ has the finite model property. We show that both $\mathsf {S5}^2$ and $\mathsf {S4}_u$ are proper extensions of $\mathsf {MS4_S}$, and that a direct generalization of the Segerberg–Maksimova theorem holds for a family of varieties containing the variety of $\mathsf {S4}_u$-algebras. Our negative results include a translation of varieties of $\mathsf {S5}_2$-algebras into varieties of $\mathsf {MS4_S}$-algebras of depth 2, which preserves and reflects local finiteness. This, in particular, shows that the problem of characterizing locally finite varieties of $\mathsf {MS4}$-algebras (even of $\mathsf {MS4_S}$-algebras) is at least as hard as that of characterizing locally finite varieties of $\mathsf {S5}_2$-algebras—a problem that remains wide open.