To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a seemingly weaker form of $\Delta ^{1}_{1}$ Turing determinacy.
Let $2 \leqslant \rho < \omega _{1}^{\mathsf {CK}}$, $\textrm{Weak-Turing-Det}_{\rho }(\Delta ^{1}_{1})$ is the statement:
Every$\Delta ^{1}_{1}$set of reals cofinal in the Turing degrees contains two Turing distinct, $\Delta ^{0}_{\rho }$-equivalent reals.
We show in $\mathsf {ZF}^-$:
$\textrm{Weak-Turing-Det}_{\rho }(\Delta ^{1}_{1})$ implies: for every $\nu < \omega _{1}^{\mathsf {CK}}$ there is a transitive model ${M \models \mathsf {ZF}^{-} + \textrm{``}\aleph _{\nu } \textrm{ exists''.}}$
As a corollary:
If every cofinal $\Delta ^{1}_{1}$ set of Turing degrees contains both a degree and its jump, then for every $\nu < \omega_1^{\mathsf{CK}}$, there is atransitive model: $M \models \mathsf{ZF}^{-} + \textrm{``}\aleph_\nu \textrm{ exists''.}$
• With a simple proof, this improves upon a well-known result of Harvey Friedman on the strength of Borel determinacy (though not assessed level-by-level).
• Invoking Tony Martin’s proof of Borel determinacy, $\textrm{Weak-Turing-Det}_{\rho }(\Delta ^{1}_{1})$ implies $\Delta ^{1}_{1}$ determinacy.
• We show further that, assuming $\Delta ^{1}_{1}$ Turing determinacy, or Borel Turing determinacy, as needed:
– Every cofinal $\Sigma ^{1}_{1}$ set of Turing degrees contains a “hyp-Turing cone”: ${\{x \in \mathcal {D} \mid d_{0} \leqslant _{T} x \leqslant _{h} d_{0} \}}$.
– For a sequence $(A_{k})_{k < \omega }$ of analytic sets of Turing degrees, cofinal in$\mathcal {D}$, $\bigcap _{k} A_{k}$ is cofinal in $\mathcal {D}$.
We introduce a tool for analysing models of $\text {CT}^-$, the compositional truth theory over Peano Arithmetic. We present a new proof of Lachlan’s theorem that the arithmetical part of models of $\text {CT}^-$ are recursively saturated. We also use this tool to provide a new proof of theorem from [8] that all models of $\text {CT}^-$ carry a partial inductive truth predicate. Finally, we construct a partial truth predicate defined for a set of formulae whose syntactic depth forms a nonstandard cut which cannot be extended to a full truth predicate satisfying $\text {CT}^-$.
We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable.
We prove that if the set of unordered pairs of real numbers is coloured by finitely many colours, there is a set of reals homeomorphic to the rationals whose pairs have at most two colours. Our proof uses large cardinals and verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals.
We explore the problems that confront any attempt to explain or explicate exactly what a primitive logical rule of inference is, or consists in. We arrive at a proposed solution that places a surprisingly heavy load on the prospect of being able to understand and deal with specifications of rules that are essentially self-referring. That is, any rule $\rho $ is to be understood via a specification that involves, embedded within it, reference to rule $\rho $ itself. Just how we arrive at this position is explained by reference to familiar rules as well as less familiar ones with unusual features. An inquiry of this kind is surprisingly absent from the foundations of inferentialism—the view that meanings of expressions (especially logical ones) are to be characterized by the rules of inference that govern them.
I show that the logic $\textsf {TJK}^{d+}$, one of the strongest logics currently known to support the naive theory of truth, is obtained from the Kripke semantics for constant domain intuitionistic logic by (i) dropping the requirement that the accessibility relation is reflexive and (ii) only allowing reflexive worlds to serve as counterexamples to logical consequence. In addition, I provide a simplified natural deduction system for $\textsf {TJK}^{d+}$, in which a restricted form of conditional proof is used to establish conditionals.
We study a class of delta-like perturbations of the Laplacian on the half-line, characterized by Robin boundary conditions at the origin. Using the formalism of nonstandard analysis, we derive a simple connection with a suitable family of Schrödinger operators with potentials of very large (infinite) magnitude and very short (infinitesimal) range. As a consequence, we also derive a similar result for point interactions in the Euclidean space $\mathbb {R}^3$, in the case of radial potentials. Moreover, we discuss explicitly our results in the case of potentials that are linear in a neighborhood of the origin.
We show that the uniform measure-theoretic ergodic decomposition of a countable Borel equivalence relation $(X, E)$ may be realized as the topological ergodic decomposition of a continuous action of a countable group $\Gamma \curvearrowright X$ generating E. We then apply this to the study of the cardinal algebra $\mathcal {K}(E)$ of equidecomposition types of Borel sets with respect to a compressible countable Borel equivalence relation $(X, E)$. We also make some general observations regarding quotient topologies on topological ergodic decompositions, with an application to weak equivalence of measure-preserving actions.
We consider the modality “$\varphi $ is true in every $\sigma $-centered forcing extension,” denoted $\square \varphi $, and its dual “$\varphi $ is true in some $\sigma $-centered forcing extension,” denoted $\lozenge \varphi $ (where $\varphi $ is a statement in set theory), which give rise to the notion of a principle of$\sigma $-centered forcing. We prove that if ZFC is consistent, then the modal logic of $\sigma $-centered forcing, i.e., the ZFC-provable principles of $\sigma $-centered forcing, is exactly $\mathsf {S4.2}$. We also generalize this result to other related classes of forcing.
This paper critically examines two arguments against the generic multiverse, both of which are due to W. Hugh Woodin. Versions of the first argument have appeared a number of times in print, while the second argument is relatively novel. We shall investigate these arguments through the lens of two different attitudes one may take toward the methodology and metaphysics of set theory; and we shall observe that the impact of these arguments depends significantly on which of these attitudes is upheld. Our examination of the second argument involves the development of a new (inner) model for Steel’s multiverse theory, which is delivered in the Appendix.
It is well-known that an element of a commutative ring with identity is nilpotent if, and only if , it lies in every prime ideal of the ring. A modification of this fact is amenable to a very simple proof mining analysis. We formulate a quantitative version of this modification and obtain an explicit bound. We present an application. This proof mining analysis is the leitmotif for some comments and observations on the methodology of computational extraction. In particular, we emphasize that the formulation of quantitative versions of ordinary mathematical theorems is of independent interest from proof mining metatheorems.
We develop a number of variants of Lifschitz realizability for $\mathbf {CZF}$ by building topological models internally in certain realizability models. We use this to show some interesting metamathematical results about constructive set theory with variants of the lesser limited principle of omniscience including consistency with unique Church’s thesis, consistency with some Brouwerian principles and variants of the numerical existence property.
In this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.
We prove a number of elementary facts about computability in partial combinatory algebras (pca’s). We disprove a suggestion made by Kreisel about using Friedberg numberings to construct extensional pca’s. We then discuss separability and elements without total extensions. We relate this to Ershov’s notion of precompleteness, and we show that precomplete numberings are not 1–1 in general.
In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$. In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$.
This paper establishes a conjecture of Steel [7] regarding the structure of elementary embeddings from a level of the cumulative hierarchy into itself. Steel’s question is related to the Mitchell order on these embeddings, studied in [5] and [7]. Although this order is known to be illfounded, Steel conjectured that it has certain large wellfounded suborders, which is what we establish. The proof relies on a simple and general analysis of the much broader class of extender embeddings and a variant of the Mitchell order called the internal relation.
We obtain a criterion for an analytic subset of a Euclidean space to contain points of differentiability of a typical Lipschitz function: namely, that it cannot be covered by countably many sets, each of which is closed and purely unrectifiable (has a zero-length intersection with every $C^1$ curve). Surprisingly, we establish that any set failing this criterion witnesses the opposite extreme of typical behaviour: in any such coverable set, a typical Lipschitz function is everywhere severely non-differentiable.
We show that there is a cuppable c.e. degree, all of whose cupping partners are high. In particular, not all cuppable degrees are ${\operatorname {\mathrm {low}}}_3$-cuppable, or indeed ${\operatorname {\mathrm {low}}}_n$ cuppable for any n, refuting a conjecture by Li. On the other hand, we show that one cannot improve highness to superhighness. We also show that the ${\operatorname {\mathrm {low}}}_2$-cuppable degrees coincide with the array computable-cuppable degrees, giving a full understanding of the latter class.
The aim of this paper is to shed light on our understanding of large scale properties of infinite strings. We say that one string $\alpha $ has weaker large scale geometry than that of $\beta $ if there is color preserving bi-Lipschitz map from $\alpha $ into $\beta $ with small distortion. This definition allows us to define a partially ordered set of large scale geometries on the classes of all infinite strings. This partial order compares large scale geometries of infinite strings. As such, it presents an algebraic tool for classification of global patterns. We study properties of this partial order. We prove, for instance, that this partial order has a greatest element and also possess infinite chains and antichains. We also investigate the sets of large scale geometries of strings accepted by finite state machines such as Büchi automata. We provide an algorithm that describes large scale geometries of strings accepted by Büchi automata. This connects the work with the complexity theory. We also prove that the quasi-isometry problem is a $\Sigma _2^0$-complete set, thus providing a bridge with computability theory. Finally, we build algebraic structures that are invariants of large scale geometries. We invoke asymptotic cones, a key concept in geometric group theory, defined via model-theoretic notion of ultra-product. Partly, we study asymptotic cones of algorithmically random strings, thus connecting the topic with algorithmic randomness.