We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a partial order on countably complete ultrafilters introduced by Ketonen [2] as a generalization of the Mitchell order. The following are our main results: the order is wellfounded; its linearity is equivalent to the Ultrapower Axiom, a principle introduced in the author’s dissertation [1]; finally, assuming the Ultrapower Axiom, the Ketonen order coincides with Lipschitz reducibility in the sense of generalized descriptive set theory.
In the present paper we use the theory of exact completions to study categorical properties of small setoids in Martin-Löf type theory and, more generally, of models of the Constructive Elementary Theory of the Category of Sets, in terms of properties of their subcategories of choice objects (i.e., objects satisfying the axiom of choice). Because of these intended applications, we deal with categories that lack equalisers and just have weak ones, but whose objects can be regarded as collections of global elements. In this context, we study the internal logic of the categories involved, and employ this analysis to give a sufficient condition for the local cartesian closure of an exact completion. Finally, we apply this result to show when an exact completion produces a model of CETCS.
It is known that there exists a first-order sentence that holds in a finite group if and only if the group is soluble. Here it is shown that the corresponding statements with ‘solubility’ replaced by ‘nilpotence’ and ‘perfectness’, among others, are false.
These facts present difficulties for the study of pseudofinite groups. However, a very weak form of Frattini’s theorem on the nilpotence of the Frattini subgroup of a finite group is proved for pseudofinite groups.
In a recent paper by M. Rathjen and the present author it has been shown that the statement “every normal function has a derivative” is equivalent to $\Pi ^1_1$-bar induction. The equivalence was proved over $\mathbf {ACA_0}$, for a suitable representation of normal functions in terms of dilators. In the present paper, we show that the statement “every normal function has at least one fixed point” is equivalent to $\Pi ^1_1$-induction along the natural numbers.
A first-order theory is equational if every definable set is a Boolean combination of instances of equations, that is, of formulae such that the family of finite intersections of instances has the descending chain condition. Equationality is a strengthening of stability. We show the equationality of the theory of proper extensions of algebraically closed fields and of the theory of separably closed fields of arbitrary imperfection degree.
We prove that the homeomorphism relation between compact spaces can be continuously reduced to the homeomorphism equivalence relation between absolute retracts, which strengthens and simplifies recent results of Chang and Gao, and Cieśla. It follows then that the homeomorphism relation of absolute retracts is Borel bireducible with the universal orbit equivalence relation. We also prove that the homeomorphism relation between regular continua is classifiable by countable structures and hence it is Borel bireducible with the universal orbit equivalence relation of the permutation group on a countable set. On the other hand we prove that the homeomorphism relation between rim-finite metrizable compacta is not classifiable by countable structures.
There is a Turing computable embedding $\Phi $ of directed graphs $\mathcal {A}$ in undirected graphs (see [15]). Moreover, there is a fixed tuple of formulas that give a uniform effective interpretation; i.e., for all directed graphs $\mathcal {A}$, these formulas interpret $\mathcal {A}$ in $\Phi (\mathcal {A})$. It follows that $\mathcal {A}$ is Medvedev reducible to $\Phi (\mathcal {A})$ uniformly; i.e., $\mathcal {A}\leq _s\Phi (\mathcal {A})$ with a fixed Turing operator that serves for all $\mathcal {A}$. We observe that there is a graph G that is not Medvedev reducible to any linear ordering. Hence, G is not effectively interpreted in any linear ordering. Similarly, there is a graph that is not interpreted in any linear ordering using computable $\Sigma _2$ formulas. Any graph can be interpreted in a linear ordering using computable $\Sigma _3$ formulas. Friedman and Stanley [4] gave a Turing computable embedding L of directed graphs in linear orderings. We show that there is no fixed tuple of $L_{\omega _1\omega }$-formulas that, for all G, interpret the input graph G in the output linear ordering $L(G)$. Harrison-Trainor and Montalbán [7] have also shown this, by a quite different proof.
We study large cardinal properties associated with Ramseyness in which homogeneous sets are demanded to satisfy various transfinite degrees of indescribability. Sharpe and Welch [25], and independently Bagaria [1], extended the notion of $\Pi ^1_n$-indescribability where $n<\omega $ to that of $\Pi ^1_\xi $-indescribability where $\xi \geq \omega $. By iterating Feng’s Ramsey operator [12] on the various $\Pi ^1_\xi $-indescribability ideals, we obtain new large cardinal hierarchies and corresponding nonlinear increasing hierarchies of normal ideals. We provide a complete account of the containment relationships between the resulting ideals and show that the corresponding large cardinal properties yield a strict linear refinement of Feng’s original Ramsey hierarchy. We isolate Ramsey properties which provide strictly increasing hierarchies between Feng’s $\Pi _\alpha $-Ramsey and $\Pi _{\alpha +1}$-Ramsey cardinals for all odd $\alpha <\omega $ and for all $\omega \leq \alpha <\kappa $. We also show that, given any ordinals $\beta _0,\beta _1<\kappa $ the increasing chains of ideals obtained by iterating the Ramsey operator on the $\Pi ^1_{\beta _0}$-indescribability ideal and the $\Pi ^1_{\beta _1}$-indescribability ideal respectively, are eventually equal; moreover, we identify the least degree of Ramseyness at which this equality occurs. As an application of our results we show that one can characterize our new large cardinal notions and the corresponding ideals in terms of generic elementary embeddings; as a special case this yields generic embedding characterizations of $\Pi ^1_\xi $-indescribability and Ramseyness.
We study the consistency and consistency strength of various configurations concerning the cardinal characteristics $\mathfrak {s}_\theta , \mathfrak {p}_\theta , \mathfrak {t}_\theta , \mathfrak {g}_\theta , \mathfrak {r}_\theta $ at uncountable regular cardinals $\theta $. Motivated by a theorem of Raghavan–Shelah who proved that $\mathfrak {s}_\theta \leq \mathfrak {b}_\theta $, we explore in the first part of the paper the consistency of inequalities comparing $\mathfrak {s}_\theta $ with $\mathfrak {p}_\theta $ and $\mathfrak {g}_\theta $. In the second part of the paper we study variations of the extender-based Radin forcing to establish several consistency results concerning $\mathfrak {r}_\theta ,\mathfrak {s}_\theta $ from hyper-measurability assumptions, results which were previously known to be consistent only from supercompactness assumptions. In doing so, we answer questions from [1], [15] and [7], and improve the large cardinal strength assumptions for results from [10] and [3].
This paper reconstructs Steel’s multiverse project in his ‘Gödel’s program’ (Steel, 2014), first by comparing it to those of Hamkins (2012) and Woodin (2011), then by detailed analysis what’s presented in Steel’s brief text. In particular, we reconstruct his notion of a ‘natural’ theory, describe his multiverse axioms and his translation function, and assess the resulting status of the Continuum Hypothesis. In the end, we reconceptualize the defect that Steel thinks $CH$ might suffer from and isolate what it would take to remove it while working within his framework. As our goal is to present as coherent and compelling a philosophical and mathematical story as we can, we allow ourselves to augment Steel’s story in places (e.g., in the treatment of Amalgamation) and to depart from it in others (e.g., the removal of ‘meaning’ from the account). The relevant mathematics is laid out in the appendices.
We characterize the linear order types $\tau $ with the property that given any countable linear order $\mathcal {L}$, $\tau \cdot \mathcal {L}$ is a computable linear order iff $\mathcal {L}$ is a computable linear order, as exactly the finite nonempty order types.
In this paper we investigate the computational complexity of deciding if the variety generated by a given finite idempotent algebra satisfies a special type of Maltsev condition that can be specified using a certain kind of finite labelled path. This class of Maltsev conditions includes several well known conditions, such as congruence permutability and having a sequence of n Jónsson terms, for some given n. We show that for such “path defined” Maltsev conditions, the decision problem is polynomial-time solvable.
We prove that Voiculescu’s noncommutative version of the Weyl-von Neumann Theorem can be extended to all unital, separably representable $\mathrm {C}^\ast $-algebras whose density character is strictly smaller than the (uncountable) cardinal invariant $\mathfrak {p}$. We show moreover that Voiculescu’s Theorem consistently fails for $\mathrm {C}^\ast $-algebras of larger density character.
We introduce a class of notions of forcing which we call $\Sigma $-Prikry, and show that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are $\Sigma $-Prikry. We show that given a $\Sigma $-Prikry poset $\mathbb P$ and a name for a non-reflecting stationary set T, there exists a corresponding $\Sigma $-Prikry poset that projects to $\mathbb P$ and kills the stationarity of T. Then, in a sequel to this paper, we develop an iteration scheme for $\Sigma $-Prikry posets. Putting the two works together, we obtain a proof of the following.
Theorem. If $\kappa $ is the limit of a countable increasing sequence of supercompact cardinals, then there exists a forcing extension in which $\kappa $ remains a strong limit cardinal, every finite collection of stationary subsets of $\kappa ^+$ reflects simultaneously, and $2^\kappa =\kappa ^{++}$.
For $G$ a Polish group, we consider $G$-flows which either contain a comeager orbit or have all orbits meager. We single out a class of flows, the maximally highly proximal (MHP) flows, for which this analysis is particularly nice. In the former case, we provide a complete structure theorem for flows containing comeager orbits, generalizing theorems of Melleray, Nguyen Van Thé, and Tsankov and of Ben Yaacov, Melleray, and Tsankov. In the latter, we show that any minimal MHP flow with all orbits meager has a metrizable factor with all orbits meager, thus ‘reflecting’ complicated dynamical behavior to metrizable flows. We then apply this to obtain a structure theorem for Polish groups whose universal minimal flow is distal.
Let $p$ be an odd prime. The unary algebra consisting of the dihedral group of order $2p$, acting on itself by left translation, is a minimal congruence lattice representation of $\mathbb{M}_{p+1}$.
A cornerstone of modern mathematical logic is the diagonal lemma of Gödel and Carnap. It is used in, for example, the classical proofs of the theorems of Gödel, Rosser, and Tarski. From its first explication in 1934, just essentially one proof has appeared for the diagonal lemma in the literature; a proof that is so tricky and hard to relate that many authors have tried to avoid the lemma altogether. As a result, some so-called diagonal-free proofs have been given for the above-mentioned fundamental theorems of logic. In this paper, we provide new proofs for the semantic formulation of the diagonal lemma, and for a weak version of the syntactic formulation of it.
Mauldin [15] proved that there is an analytic set, which cannot be represented by $B\cup X$ for some Borel set B and a subset X of a $\boldsymbol{\Sigma }^0_2$-null set, answering a question by Johnson [10]. We reprove Mauldin’s answer by a recursion-theoretical method. We also give a characterization of the Borel generated $\sigma $-ideals having approximation property under the assumption that every real is constructible, answering Mauldin’s question raised in [15].
Hermann Weyl was one of the greatest mathematicians of the 20th century, with contributions to many branches of mathematics and physics. In 1918, he wrote a famous book, “Das Kontinuum”, on the foundations of mathematics. In that book, he described mathematical analysis as a ‘house built on sand’, and tried to ‘replace this shifting foundation with pillars of enduring strength’.
In this paper, we reexamine and explain the philosophical and mathematical ideas that underly Weyl’s system in “Das Kontinuum”, and show that they are still useful and relevant. We propose a precise formalization of that system, which is the first to be completely faithful to what is written in the book. Finally, we suggest that a certain set-theoretical modern system reflects better Weyl’s ideas than previous attempts (most notably by Feferman) of achieving this goal.