To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for worlds and one for information states, and characterise inquisitive modal logic as the bisimulation invariant fragment of first-order logic over various natural classes of two-sorted structures.
We introduce the framework of AECats (abstract elementary categories), generalizing both the category of models of some first-order theory and the category of subsets of models. Any AEC and any compact abstract theory (“cat”, as introduced by Ben-Yaacov) forms an AECat. In particular, we find applications in positive logic and continuous logic: the category of (subsets of) models of a positive or continuous theory is an AECat. The Kim–Pillay theorem for first-order logic characterizes simple theories by the properties dividing independence has. We prove a version of the Kim–Pillay theorem for AECats with the amalgamation property, generalizing the first-order version and existing versions for positive logic.
We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.
We show that a computable function $f:\mathbb R\rightarrow \mathbb R$ has Luzin’s property (N) if and only if it reflects $\Pi ^1_1$-randomness, if and only if it reflects $\Delta ^1_1({\mathcal {O}})$-randomness, and if and only if it reflects ${\mathcal {O}}$-Kurtz randomness, but reflecting Martin–Löf randomness or weak-2-randomness does not suffice. Here a function f is said to reflect a randomness notion R if whenever $f(x)$ is R-random, then x is R-random as well. If additionally f is known to have bounded variation, then we show f has Luzin’s (N) if and only if it reflects weak-2-randomness, and if and only if it reflects $\emptyset '$-Kurtz randomness. This links classical real analysis with algorithmic randomness.
Ramsey’s theorem asserts that every k-coloring of $[\omega ]^n$ admits an infinite monochromatic set. Whenever $n \geq 3$, there exists a computable k-coloring of $[\omega ]^n$ whose solutions compute the halting set. On the other hand, for every computable k-coloring of $[\omega ]^2$ and every noncomputable set C, there is an infinite monochromatic set H such that $C \not \leq _T H$. The latter property is known as cone avoidance.
In this article, we design a natural class of Ramsey-like theorems encompassing many statements studied in reverse mathematics. We prove that this class admits a maximal statement satisfying cone avoidance and use it as a criterion to re-obtain many existing proofs of cone avoidance. This maximal statement asserts the existence, for every k-coloring of $[\omega ]^n$, of an infinite subdomain $H \subseteq \omega $ over which the coloring depends only on the sparsity of its elements. This confirms the intuition that Ramsey-like theorems compute Turing degrees only through the sparsity of its solutions.
We determine the modal logic of fixed-point models of truth and their axiomatizations by Solomon Feferman via Solovay-style completeness results. Given a fixed-point model $\mathcal {M}$, or an axiomatization S thereof, we find a modal logic M such that a modal sentence $\varphi $ is a theorem of M if and only if the sentence $\varphi ^*$ obtained by translating the modal operator with the truth predicate is true in $\mathcal {M}$ or a theorem of S under all such translations. To this end, we introduce a novel version of possible worlds semantics featuring both classical and nonclassical worlds and establish the completeness of a family of noncongruent modal logics whose internal logic is nonclassical with respect to this semantics.
Let $\mathcal M=(M,<,\ldots)$ be a linearly ordered first-order structure and T its complete theory. We investigate conditions for T that could guarantee that $\mathcal M$ is not much more complex than some colored orders (linear orders with added unary predicates). Motivated by Rubin’s work [5], we label three conditions expressing properties of types of T and/or automorphisms of models of T. We prove several results which indicate the “geometric” simplicity of definable sets in models of theories satisfying these conditions. For example, we prove that the strongest condition characterizes, up to definitional equivalence (inter-definability), theories of colored orders expanded by equivalence relations with convex classes.
A subset X of a Polish group G is Haar null if there exists a Borel probability measure μ and a Borel set B containing X such that μ(gBh) = 0 for every g, h ∈ G. A set X is Haar meager if there exists a compact metric space K, a continuous function f : K → G and a Borel set B containing X such that f−1(gBh) is meager in K for every g, h ∈ G. We calculate (in ZFC) the four cardinal invariants (add, cov, non, cof) of these two σ-ideals for the simplest non-locally compact Polish group, namely in the case $G = \mathbb {Z}^\omega$. In fact, most results work for separable Banach spaces as well, and many results work for Polish groups admitting a two-sided invariant metric. This answers a question of the first named author and Vidnyánszky.
We characterize Weihrauch reducibility in $ \operatorname {\mathrm {E-PA^{\omega }}} + \operatorname {\mathrm {QF-AC^{0,0}}}$ and all systems containing it by the provability in a linear variant of the same calculus using modifications of Gödel’s Dialectica interpretation that incorporate ideas from linear logic, nonstandard arithmetic, higher-order computability, and phase semantics.
We give an example of two ordered structures $\mathcal {M},\mathcal {N}$ in the same language $\mathcal {L}$ with the same universe, the same order and admitting the same one-variable definable subsets such that $\mathcal {M}$ is a model of the common theory of o-minimal $\mathcal {L}$-structures and $\mathcal {N}$ admits a definable, closed, bounded, and discrete subset and a definable injective self-mapping of that subset which is not surjective. This answers negatively two question by Schoutens; the first being whether there is an axiomatization of the common theory of o-minimal structures in a given language by conditions on one-variable definable sets alone. The second being whether definable completeness and type completeness imply the pigeonhole principle. It also partially answers a question by Fornasiero asking whether definable completeness of an expansion of a real closed field implies the pigeonhole principle.
We generalize a well-known theorem binding the elementary equivalence relation on the level of PAC fields and the isomorphism type of their absolute Galois groups. Our results concern two cases: saturated PAC structures and nonsaturated PAC structures.
We study computable Polish spaces and Polish groups up to homeomorphism. We prove a natural effective analogy of Stone duality, and we also develop an effective definability technique which works up to homeomorphism. As an application, we show that there is a $\Delta ^0_2$ Polish space not homeomorphic to a computable one. We apply our techniques to build, for any computable ordinal $\alpha $, an effectively closed set not homeomorphic to any $0^{(\alpha )}$-computable Polish space; this answers a question of Nies. We also prove analogous results for compact Polish groups and locally path-connected spaces.
The main objective of this paper is the following two results. (1) There exists a computable bi-orderable group that does not have a computable bi-ordering; (2) there exists a bi-orderable, two-generated computably presented solvable group with undecidable word problem. Both of the groups can be found among two-generated solvable groups of derived length $3$.
(1) [a]nswers a question posed by Downey and Kurtz; (2) answers a question posed by Bludov and Glass in Kourovka Notebook.
One of the technical tools used to obtain the main results is a computational extension of an embedding theorem of B. Neumann that was studied by the author earlier. In this paper we also compliment that result and derive new corollaries that might be of independent interest.
Here, we present a category ${\mathbf {pEff}}$ which can be considered a predicative variant of Hyland's Effective Topos ${{\mathbf {Eff} }}$ for the following reasons. First, its construction is carried in Feferman’s predicative theory of non-iterative fixpoints ${{\widehat {ID_1}}}$. Second, ${\mathbf {pEff}}$ is a list-arithmetic locally cartesian closed pretopos with a full subcategory ${{\mathbf {pEff}_{set}}}$ of small objects having the same categorical structure which is preserved by the embedding in ${\mathbf {pEff}}$; furthermore subobjects in ${{\mathbf {pEff}_{set}}}$ are classified by a non-small object in ${\mathbf {pEff}}$. Third ${\mathbf {pEff}}$ happens to coincide with the exact completion of the lex category defined as a predicative rendering in ${{\widehat {ID_1}}}$ of the subcategory of ${{\mathbf {Eff} }}$ of recursive functions and it validates the Formal Church’s thesis. Hence pEff turns out to be itself a predicative rendering of a full subcategory of ${{\mathbf {Eff} }}$.
We describe punctual categoricity in several natural classes, including binary relational structures and mono-unary functional structures. We prove that every punctually categorical structure in a finite unary language is ${\text {PA}}(0')$-categorical, and we show that this upper bound is tight. We also construct an example of a punctually categorical structure whose degree of categoricity is $0''$. We also prove that, with a bit of work, the latter result can be pushed beyond $\Delta ^1_1$, thus showing that punctually categorical structures can possess arbitrarily complex automorphism orbits.
As a consequence, it follows that binary relational structures and unary structures are not universal with respect to primitive recursive interpretations; equivalently, in these classes every rich enough interpretation technique must necessarily involve unbounded existential quantification or infinite disjunction. In contrast, it is well-known that both classes are universal for Turing computability.
A linear space is a system of points and lines such that any two distinct points determine a unique line; a Steiner k-system (for $k \geq 2$) is a linear space such that each line has size exactly k. Clearly, as a two-sorted structure, no linear space can be strongly minimal. We formulate linear spaces in a (bi-interpretable) vocabulary $\tau $ with a single ternary relation R. We prove that for every integer k there exist $2^{\aleph _0}$-many integer valued functions $\mu $ such that each $\mu $ determines a distinct strongly minimal Steiner k-system $\mathcal {G}_\mu $, whose algebraic closure geometry has all the properties of the ab initio Hrushovski construction. Thus each is a counterexample to the Zilber Trichotomy Conjecture.
This paper explores the analysis of ability, where ability is to be understood in the epistemic sense—in contrast to what might be called a causal sense. There are plenty of cases where an agent is able to perform an action that guarantees a given result even though she does not know which of her actions guarantees that result. Such an agent possesses the causal ability but lacks the epistemic ability. The standard analysis of such epistemic abilities relies on the notion of action types—as opposed to action tokens—and then posits that an agent has the epistemic ability to do something if and only if there is an action type available to her that she knows guarantees it. We show that these action types are not needed: we present a formalism without action types that can simulate analyzes of epistemic ability that rely on action types. Our formalism is a standard epistemic extension of the theory of “seeing to it that”, which arose from a modal tradition in the logic of action.
This paper explores relational syllogistic logics, a family of logical systems related to reasoning about relations in extensions of the classical syllogistic. These are all decidable logical systems. We prove completeness theorems and complexity results for a natural subfamily of relational syllogistic logics, parametrized by constructors for terms and for sentences.
In this article, I provide Urquhart-style semilattice semantics for three connexive logics in an implication-negation language (I call these “pure theories of connexive implication”). The systems semantically characterized include the implication-negation fragment of a connexive logic of Wansing, a relevant connexive logic recently developed proof-theoretically by Francez, and an intermediate system that is novel to this article. Simple proofs of soundness and completeness are given and the semantics is used to establish various facts about the systems (e.g., that two of the systems have the variable sharing property). I emphasize the intuitive content of the semantics and discuss how natural informational considerations underly each of the examined systems.
A vexing question in Bayesian epistemology is how an agent should update on evidence which she assigned zero prior credence. Some theorists have suggested that, in such cases, the agent should update by Kolmogorov conditionalization, a norm based on Kolmogorov’s theory of regular conditional distributions. However, it turns out that in some situations, a Kolmogorov conditionalizer will plan to always assign a posterior credence of zero to the evidence she learns. Intuitively, such a plan is irrational and easily Dutch bookable. In this paper, we propose a revised norm, Kolmogorov–Blackwell conditionalization, which avoids this problem. We prove a Dutch book theorem and converse Dutch book theorem for this revised norm, and relate our results to those of Rescorla (2018).