We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A3| ≤ O(|A|), or small alternation, |AA−1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.
Many phenomena in geometry and analysis can be explained via the theory of $D$-modules, but this theory explains close to nothing in the non-archimedean case, by the absence of integration by parts. Hence there is a need to look for alternatives. A central example of a notion based on the theory of $D$-modules is the notion of holonomic distributions. We study two recent alternatives of this notion in the context of distributions on non-archimedean local fields, namely $\mathscr{C}^{\text{exp}}$-class distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)] by showing that each distribution of the $\mathscr{C}^{\text{exp}}$-class is WF-holonomic and thus provides a framework of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting because the $\mathscr{C}^{\text{exp}}$-class contains many natural distributions, in particular, the distributions studied by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We show also another stability result of this class, namely, one can regularize distributions without leaving the $\mathscr{C}^{\text{exp}}$-class. We strengthen a link from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] between zero loci and smooth loci for functions and distributions of the $\mathscr{C}^{\text{exp}}$-class. A key ingredient is a new resolution result for subanalytic functions (by alterations), based on embedded resolution for analytic functions and model theory.
We present a sequent calculus for the Grzegorczyk modal logic $\mathsf {Grz}$ allowing cyclic and other non-well-founded proofs and obtain the cut-elimination theorem for it by constructing a continuous cut-elimination mapping acting on these proofs. As an application, we establish the Lyndon interpolation property for the logic $\mathsf {Grz}$ proof-theoretically.
In this paper we explore the following question: how weak can a logic be for Rosser’s essential undecidability result to be provable for a weak arithmetical theory? It is well known that Robinson’s Q is essentially undecidable in intuitionistic logic, and P. Hájek proved it in the fuzzy logic BL for Grzegorczyk’s variant of Q which interprets the arithmetic operations as nontotal nonfunctional relations. We present a proof of essential undecidability in a much weaker substructural logic and for a much weaker arithmetic theory, a version of Robinson’s R (with arithmetic operations also interpreted as mere relations). Our result is based on a structural version of the undecidability argument introduced by Kleene and we show that it goes well beyond the scope of the Boolean, intuitionistic, or fuzzy logic.
Any set of truth-functional connectives has sequent calculus rules that can be generated systematically from the truth tables of the connectives. Such a sequent calculus gives rise to a multi-conclusion natural deduction system and to a version of Parigot’s free deduction. The elimination rules are “general,” but can be systematically simplified. Cut-elimination and normalization hold. Restriction to a single formula in the succedent yields intuitionistic versions of these systems. The rules also yield generalized lambda calculi providing proof terms for natural deduction proofs as in the Curry–Howard isomorphism. Addition of an indirect proof rule yields classical single-conclusion versions of these systems. Gentzen’s standard systems arise as special cases.
This paper contributes to the calculization of evocation and erotetic implication as defined by Inferential Erotetic Logic (IEL). There is a straightforward approach to calculizing (propositional) erotetic implication which cannot be applied to evocation. First-order evocation is proven to be uncalculizable, i.e. there is no proof system, say FOE, such that for all $X, Q$: X evokes Q iff there is an FOE-proof for the evocation of Q by X. These results suggest a critique of the represented approaches to calculizing IEL. This critique is expanded into a programmatic reconsideration of the IEL-definitions of evocation and erotetic implication. From a different point of view these definitions should be seen as desiderata that may or may not play the role of a point of orientation when setting up “rules of asking.”
We study imagination as reality-oriented mental simulation (ROMS): the activity of simulating nonactual scenarios in one’s mind, to investigate what would happen if they were realized. Three connected questions concerning ROMS are: What is the logic, if there is one, of such an activity? How can we gain new knowledge via it? What is voluntary in it and what is not? We address them by building a list of core features of imagination as ROMS, drawing on research in cognitive psychology and the philosophy of mind. We then provide a logic of imagination as ROMS which models such features, combining techniques from epistemic logic, action logic, and subject matter semantics. Our logic comprises a modal propositional language with non-monotonic imagination operators, a formal semantics, and an axiomatization.
After the publication of Begriffsschrift, a conflict erupted between Frege and Schröder regarding their respective logical systems which emerged around the Leibnizian notions of lingua characterica and calculus ratiocinator. Both of them claimed their own logic to be a better realisation of Leibniz’s ideal language and considered the rival system a mere calculus ratiocinator. Inspired by this polemic, van Heijenoort (1967b) distinguished two conceptions of logic—logic as language and logic as calculus—and presented them as opposing views, but did not explain Frege’s and Schröder’s conceptions of the fulfilment of Leibniz’s scientific ideal.
In this paper I explain the reasons for Frege’s and Schröder’s mutual accusations of having created a mere calculus ratiocinator. On the one hand, Schröder’s construction of the algebra of relatives fits with a project for the reduction of any mathematical concept to the notion of relative. From this stance I argue that he deemed the formal system of Begriffsschrift incapable of such a reduction. On the other hand, first I argue that Frege took Boolean logic to be an abstract logical theory inadequate for the rendering of specific content; then I claim that the language of Begriffsschrift did not constitute a complete lingua characterica by itself, more being seen by Frege as a tool that could be applied to scientific disciplines. Accordingly, I argue that Frege’s project of constructing a lingua characterica was not tied to his later logicist programme.
In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity.” This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The starting point is to recognize that to each mathematical proof corresponds a proof activity which consists of a sequence of deductive inferences—i.e., a sequence of epistemic actions—and that any written mathematical proof is only a report of its corresponding proof activity. The main idea to be developed is that the plan of a mathematical proof is to be conceived and analyzed as the plan of the agent(s) who carried out the corresponding proof activity. The core of the paper is thus devoted to the development of an account of plans and planning in the context of proof activities. The account is based on the theory of planning agency developed by Michael Bratman in the philosophy of action. It is fleshed out by providing an analysis of the notions of intention—the elementary components of plans—and practical reasoning—the process by which plans are constructed—in the context of proof activities. These two notions are then used to offer a precise characterization of the desired notion of plan for proof activities. A fruitful connection can then be established between the resulting framework and the recent theme of modularity in mathematics introduced by Jeremy Avigad. This connection is exploited to yield the concept of modular presentations of mathematical proofs which has direct implications for how to write and present mathematical proofs so as to deliver various epistemic benefits. The account is finally compared to the technique of proof planning developed by Alan Bundy and colleagues in the field of automated theorem proving. The paper concludes with some remarks on how the framework can be used to provide an analysis of understanding and explanation in the context of mathematical proofs.
A globally expressivist analysis of the indicative conditional based on the Ramsey Test is presented. The analysis is a form of ‘global’ expressivism in that it supplies acceptance and rejection conditions for all the sentence forming connectives of propositional logic (negation, disjunction, etc.) and so allows the conditional to embed in arbitrarily complex sentences (thus avoiding the Frege–Geach problem). The expressivist framework is semantically characterized in a restrictor semantics due to Vann McGee, and is completely axiomatized in a logic dubbed ICL (‘Indicative Conditional Logic’). The expressivist framework extends the AGM (after Alchourron, Gärdenfors, Makinson) framework for belief revision and so provides a categorical (‘yes’–‘no’) epistemology for conditionals that complements McGee’s probabilistic framework while drawing on the same semantics. The result is an account of the semantics and acceptability conditions of the indicative conditional that fits well with the linguistic data (as pooled by linguists and from psychological experiments) while integrating both expressivist and semanticist perspectives.
One of the central logical ideas in Wittgenstein’s Tractatus logico-philosophicus is the elimination of the identity sign in favor of the so-called “exclusive interpretation” of names and quantifiers requiring different names to refer to different objects and (roughly) different variables to take different values. In this paper, we examine a recent development of these ideas in papers by Kai Wehmeier. We diagnose two main problems of Wehmeier’s account, the first concerning the treatment of individual constants, the second concerning so-called “pseudo-propositions” (Scheinsätze) of classical logic such as $a=a$ or $a=b \wedge b=c \rightarrow a=c$. We argue that overcoming these problems requires two fairly drastic departures from Wehmeier’s account: (1) Not every formula of classical first-order logic will be translatable into a single formula of Wittgenstein’s exclusive notation. Instead, there will often be a multiplicity of possible translations, revealing the original “inclusive” formulas to be ambiguous. (2) Certain formulas of first-order logic such as $a=a$ will not be translatable into Wittgenstein’s notation at all, being thereby revealed as nonsensical pseudo-propositions which should be excluded from a “correct” conceptual notation. We provide translation procedures from inclusive quantifier-free logic into the exclusive notation that take these modifications into account and define a notion of logical equivalence suitable for assessing these translations.
We show that a $(\kappa ^{+},1)$-simplified morass can be added by a forcing with working parts of size smaller than $\kappa $. This answers affirmatively the question, asked independently by Shelah and Velleman in the early 1990s, of whether it is possible to do so.
Our argument use a modification of a technique of Mitchell’s for adding objects of size $\omega _2$ in which collections of models – all of equal, countable size – are used as side conditions. In our modification, whilst the individual models are, as in Mitchell’s technique, taken ad hoc from quite general classes, the collections of models are very highly structured, in a way that is somewhat different from, perhaps more stringent than, Mitchell’s original, arguably making the method more wieldy and giving the prospect of further uses with more delicate working parts.
This paper investigates the principles that one must add to Boolean algebra to capture reasoning not only about intersection, union, and complementation of sets, but also about the relative size of sets. We completely axiomatize such reasoning under the Cantorian definition of relative size in terms of injections.
We define a weak iterability notion that is sufficient for a number of arguments concerning $\Sigma _{1}$-definability at uncountable regular cardinals. In particular we give its exact consistency strength first in terms of the second uniform indiscernible for bounded subsets of $\kappa $: $u_2(\kappa )$, and secondly to give the consistency strength of a property of Lücke’s.
TheoremThe following are equiconsistent:
(i)There exists$\kappa $which is stably measurable;
(ii)for some cardinal$\kappa $, $u_2(\kappa )=\sigma (\kappa )$;
(iii)The$\boldsymbol {\Sigma }_{1}$-club property holds at a cardinal$\kappa $.
Here $\sigma (\kappa )$ is the height of the smallest $M \prec _{\Sigma _{1}} H ( \kappa ^{+} )$ containing $\kappa +1$ and all of $H ( \kappa )$. Let $\Phi (\kappa )$ be the assertion:
TheoremSuppose there is no sharp for an inner model with a strong cardinal. Then in the core model K we have:$\mbox {``}\exists \kappa \Phi (\kappa ) \mbox {''}$is (set)-generically absolute${\,\longleftrightarrow \,}$There are arbitrarily large stably measurable cardinals.
When $u_2(\kappa ) < \sigma (\kappa )$ we give some results on inner model reflection.
We show in ZFC that the existence of completely separable maximal almost disjoint families of subsets of $\omega $ implies that the modal logic $\mathbf {S4.1.2}$ is complete with respect to the Čech–Stone compactification of the natural numbers, the space $\beta \omega $. In the same fashion we prove that the modal logic $\mathbf {S4}$ is complete with respect to the space $\omega ^*=\beta \omega \setminus \omega $. This improves the results of G. Bezhanishvili and J. Harding in [4], where the authors prove these theorems under stronger assumptions ($\mathfrak {a=c}$). Our proof is also somewhat simpler.
The proofs of Gödel (1931), Rosser (1936), Kleene (first 1936 and second 1950), Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with each other, especially from the viewpoint of the second incompleteness theorem. It is shown that Gödel’s (first incompleteness theorem) and Kleene’s first theorems are equivalent with the second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second incompleteness theorem, and Boolos’ theorem is derived from the second incompleteness theorem in the standard way. It is also shown that none of Rosser’s, Kleene’s second, or Boolos’ theorems is equivalent with the second incompleteness theorem, and Chaitin’s incompleteness theorem neither delivers nor is derived from the second incompleteness theorem. We compare (the strength of) these six proofs with one another.
We obtain modal completeness of the interpretability logics IL$\!\!\textsf {P}_{\textsf {0}}$ and ILR w.r.t. generalised Veltman semantics. Our proofs are based on the notion of full labels [2]. We also give shorter proofs of completeness w.r.t. the generalised semantics for many classical interpretability logics. We obtain decidability and finite model property w.r.t. the generalised semantics for IL$\textsf {P}_{\textsf {0}}$ and ILR. Finally, we develop a construction that might be useful for proofs of completeness of extensions of ILW w.r.t. the generalised semantics in the future, and demonstrate its usage with $\textbf {IL}\textsf {W}^\ast = \textbf {IL}\textsf {WM}_{\textsf {0}}$.
For a given inner model N of ZFC, one can consider the relativized version of Berkeley cardinals in the context of ZFC, and ask if there can exist an “N-Berkeley cardinal.” In this article we provide a positive answer to this question. Indeed, under the assumption of a supercompact cardinal $\delta $, we show that there exists a ZFC inner model N such that there is a cardinal which is N-Berkeley, even in a strong sense. Further, the involved model N is a weak extender model of $\delta $ is supercompact. Finally, we prove that the strong version of N-Berkeley cardinals turns out to be inconsistent whenever N satisfies closure under $\omega $-sequences.
We present three examples of countable homogeneous structures (also called Fraïssé limits) whose automorphism groups are not universal, namely, fail to contain isomorphic copies of all automorphism groups of their substructures.
Our first example is a particular case of a rather general construction on Fraïssé classes, which we call diversification, leading to automorphism groups containing copies of all finite groups. Our second example is a special case of another general construction on Fraïssé classes, the mixed sums, leading to a Fraïssé class with all finite symmetric groups appearing as automorphism groups and at the same time with a torsion-free automorphism group of its Fraïssé limit. Our last example is a Fraïssé class of finite models with arbitrarily large finite abelian automorphism groups, such that the automorphism group of its Fraïssé limit is again torsion-free.