To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We apply the collapse techniques to Poizat's red differential field in order to obtain differentially closed fields of Morley rank ω·2 each equipped with an additive definable subgroup of rank ω. By means of the logarithmic derivative, we obtain a green field of rank ω·2 with a multiplicative definable divisible subgroup containing the field of constants, which is again definable in the reduct of the green field.
We consider a new subgroup In(G) in any group G of finite Morley rank. This definably characteristic subgroup is the smallest normal subgroup of G from which we can hope to build a geometry over the quotient group G/ In(G). We say that G is a geometric group if In(G) is trivial.
This paper is a discussion of a conjecture which states that every geometric group G of finite Morley rank is definably linear over a ring K1 ⊕…⊕ Kn where K1,…,Kn are some interpretable fields. This linearity conjecture seems to generalize the Cherlin–Zil'ber conjecture in a very large class of groups of finite Morley rank.
We show that, if this linearity conjecture is true, then there is a Rosenlicht theorem for groups of finite Morley rank, in the sense that the quotient group of any connected group of finite Morley rank by its hypercentre is definably linear.
In order to construct a counterexample to Zilber's conjecture—that a strongly minimal set has a degenerate, affine or field-like geometry—Ehud Hrushovski invented an amalgamation technique which has yielded all the exotic geometries so far. We shall present a framework for this construction in the language of standard geometric stability and show how some of the recent constructions fit into this setting. We also ask some fundamental questions concerning this method.
The notion of an angular function has been introduced by Zilber as one possible way of connecting non-commutative geometry with two ‘counterexamples’ from model theory: the non-classical Zariski curves of Hrushovski and Zilber, and Poizat's field with green points. This article discusses some questions of Zilber relating to existentially closed structures in the class of algebraically closed fields with an angular function.
We construct the free fusion of two geometric thories over a common ω-categorical strongly minimal reduct. If the two theories are supersimple of rank 1 (and satisfy an additional hypothesis true in particular for stable theories or trivial reduct), the completions of the free fusion are supersimple of rank at most ω.
We prove that a finitely generated semigroup whose word problem is a one-counter language has a linear growth function. This provides us with a very strong restriction on the structure of such a semigroup, which, in particular, yields an elementary proof of a result of Herbst, that a group with a one-counter word problem is virtually cyclic. We prove also that the word problem of a group is an intersection of finitely many one-counter languages if and only if the group is virtually abelian.
We draw a connection between the model-theoretic notions of modularity (or one-basedness), orthogonality and internality, as applied to difference fields, and questions of descent in in algebraic dynamics. In particular we prove in any dimension a strong dynamical version of Northcott's theorem for function fields, answering a question of Szpiro and Tucker and generalizing a theorem of Baker's for the projective line.
The paper comes in three parts. This first part contains an exposition some of the main results of the model theory of difference fields, and their immediate connection to questions of descent in algebraic dynamics. We present the model-theoretic notion of internality in a context that does not require a universal domain with quantifier-elimination. We also note a version of canonical heights that applies well beyond polarized algebraic dynamics. Part II sharpens the structure theory to arbitrary base fields and constructible maps where in part I we emphasize finite base change and correspondences. Part III will include precise structure theorems related to the Galois theory considered here, and will enable a sharpening of the descent results for non-modular dynamics.
This second part of the paper strengthens the descent theory described in the first part torational maps and arbitrary base fields. We obtain in particular a decomposition of any difference field extension into a tower of finite, field-internal and one-based difference field extensions. This is needed in order to obtain the ‘dynamical Northcott’ Theorem 1.11 of Part I in sharp form.
While the classification project for the simple groups of finite Morley rank is unlikely toproduce a classification of the simple groups of finite Morley rank, the enterprise has already arrived at a considerably closer approximation to that ideal goal than could have been realistically anticipated, with a mix of results of several flavors, some classificatory and others more structural, which can be combined when the stars are suitably aligned to produce results at a level of generality which, in parallel areas of group theory, would normally require either some additional geometric structure, or an explicit classification. And Bruno Poizat is generally awesome, though sometimes he goes too far.
The classes in Valiant's theory are classes of polynomials defined by arithmetic circuits. We characterize them by different notions of tensor calculus, in the vein of Damm, Holzer and McKenzie. This characterization underlines in particular the role played by properties of parallelization in these classes. We also give a first natural complete sequence for the class VPnb, the analogue of the class P in this context.
Dichotomies in various conjectures from algebraic geometry are in fact occurrences of the dichotomy among Zariski structures. This is what Hrushovski showed and which enabled him to solve, positively, the geometric Mordell–Lang conjecture in positive characteristic. Are we able now to avoid this use of Zariski structures? Pillay and Ziegler have given a direct proof that works for semi-abelian varieties they called ‘very thin’, which include the ordinary abelian varieties. But it does not apply in all generality: we describe here an abelian variety which is not very thin. More generally, we consider from a model-theoretical point of view several questions about the fields of definition of semi-abelian varieties.
We prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor–Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T has infinitely many countable elementary extensions up to M0-isomorphism. The latter extends earlier results of the author in the stable case, and is a special case of a recent result of Tanovic.
We establish an identification result of the projective special linear group of dimension 2among a certain class of groups the Morley rank of which is finite.
This paper is a brief survey of recent results and some open problems related to linear groups of finite Morley rank, an area of research where Bruno Poizat's impact is very prominent. As a sign of respect to his strongly expressed views that mathematics has to be done, written and pulished only in the native tongue of the immediate author–the scribe, in effect–of the text, I insist on writing my paper in Russian, even if the results presented belong to a small but multilingual community of researchers of American, British, French, German, Kazakh, Russian, Turkish origin. To emphasise even further the linguistic subtleties involved, I use British spelling in the English fragments of my text.
We construct a bad field in characteristic zero. That is, we construct an algebraically closed field which carries a notion of dimension analogous to Zariski-dimension, with an infinite proper multiplicative subgroup of dimension one, and such that the field itself has dimension two. This answers a longstanding open question by Zilber.
We prove that every for every complete lattice-ordered effect algebra E there exists an orthomodular lattice O(E) and a surjective full morphism øE: O(E) → E which preserves blocks in both directions: the (pre)imageofa block is always a block. Moreover, there is a 0, 1-lattice embedding : E → O(E).
We introduce perfect effect algebras and we show that every perfect algebra is an interval in the lexicographical product of the group of all integers with an Abelian directed interpolation po-group. To show this we introduce prime ideals of effect algebras with the Riesz decomposition property (RDP). We show that the category of perfect effect algebras is categorically equivalent to the category of Abelian directed interpolation po-groups. Moreover, we prove that any perfect effect algebra is a subdirect product of antilattice effect algebras with the RDP.
To each filter ℱ on ω, a certain linear subalgebra A(ℱ) of Rω, the countable product of lines, is assigned. This algebra is shown to have many interesting topological properties, depending on the properties of the filter ℱ. For example, if ℱ is a free ultrafilter, then A(ℱ) is a Baire subalgebra of ℱω for which the game OF introduced by Tkachenko is undetermined (this resolves a problem of Hernández, Robbie and Tkachenko); and if ℱ1 and ℱ2 are two free filters on ω that are not near coherent (such filters exist under Martin's Axiom), then A (ℱ1) and A(ℱ2) are two o-bounded and OF-undetermined subalgebras of ℱω whose product A(ℱ1) × A(ℱ2) is OF-determined and not o-bounded (this resolves a problem of Tkachenko). It is also shown that the statement that the product of two o-bounded subrings of ℱω is o-bounded is equivalent to the set-theoretic principle NCF (Near Coherence of Filters); this suggests that Tkachenko's question on the productivity of the class of o-bounded topological groups may be undecidable in ZFC.
Free algebras with an arbitrary number of free generators in varieties of BL-algebras generated by one BL-chain that is an ordinal sum of a finite MV-chain Ln, and a generalized BL-chain B are described in terms of weak Boolean products of BL-algebras that are ordinal sums of subalgebras of Ln, and free algebras in the variety of basic hoops generated by B. The Boolean products are taken over the Stone spaces of the Boolean subalgebras of idempotents of free algebras in the variety of MV-algebras generated by Ln.
We show that monotone σ -complete effect algebras under some conditions are σ - homomorphic images of effect-tribes (as monotone σ -complete effect algebras), which are nonempty systems of fuzzy sets closed under complements, sums of fuzzy sets less than 1, and containing all pointwise limits of nondecreasing fuzzy sets. Because effect-tribes are generalizations of Boolean σ -algebras of subsets, we present a generlization of the Loomis-Sikorski theorem for such effect algebras. We show that we can choose an effect-tribe to be a system of affin fuzzy sets. In addition, we present a new version of the Loomis-Sikorski theorem for σ-complete MV-algebras.