To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a general framework for automatic continuity results for groups of isometries of metric spaces. In particular, we prove automatic continuity property for the groups of isometries of the Urysohn space and the Urysohn sphere, i.e. that any homomorphism from either of these groups into a separable group is continuous. This answers a question of Ben Yaacov, Berenstein and Melleray. As a consequence, we get that the group of isometries of the Urysohn space has unique Polish group topology and the group of isometries of the Urysohn sphere has unique separable group topology. Moreover, as an application of our framework we obtain new proofs of the automatic continuity property for the group $\text{Aut}([0,1],\unicode[STIX]{x1D706})$, due to Ben Yaacov, Berenstein and Melleray and for the unitary group of the infinite-dimensional separable Hilbert space, due to Tsankov.
Let G be a polycyclic, metabelian or soluble of type (FP)∞ group such that the class Rat(G) of all rational subsets of G is a Boolean algebra. Then, G is virtually abelian. Every soluble biautomatic group is virtually abelian.
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
We study the relationship between a $\unicode[STIX]{x1D705}$-Souslin tree $T$ and its reduced powers $T^{\unicode[STIX]{x1D703}}/{\mathcal{U}}$.
Previous works addressed this problem from the viewpoint of a single power $\unicode[STIX]{x1D703}$, whereas here, tools are developed for controlling different powers simultaneously. As a sample corollary, we obtain the consistency of an $\aleph _{6}$-Souslin tree $T$ and a sequence of uniform ultrafilters $\langle {\mathcal{U}}_{n}\mid n<6\rangle$ such that $T^{\aleph _{n}}/{\mathcal{U}}_{n}$ is $\aleph _{6}$-Aronszajn if and only if $n<6$ is not a prime number.
This paper is the first application of the microscopic approach to Souslin-tree construction, recently introduced by the authors. A major component here is devising a method for constructing trees with a prescribed combination of freeness degree and ascent-path characteristics.
We study the question of which Henselian fields admit definable Henselian valuations (with or without parameters). We show that every field that admits a Henselian valuation with non-divisible value group admits a parameter-definable (non-trivial) Henselian valuation. In equicharacteristic 0, we give a complete characterization of Henselian fields admitting a parameter-definable (non-trivial) Henselian valuation. We also obtain partial characterization results of fields admitting -definable (non-trivial) Henselian valuations. We then draw some Galois-theoretic conclusions from our results.
We introduce the open degree of a compact space, and we show that for every natural number $n$, the separable Rosenthal compact spaces of degree $n$ have a finite basis.
Forster [‘Finite-to-one maps’, J. Symbolic Logic68 (2003), 1251–1253] showed, in Zermelo–Fraenkel set theory, that if there is a finite-to-one map from ${\mathcal{P}}(A)$, the set of all subsets of a set $A$, onto $A$, then $A$ must be finite. If we assume the axiom of choice (AC), the cardinalities of ${\mathcal{P}}(A)$ and the set $S(A)$ of permutations on $A$ are equal for any infinite set $A$. In the absence of AC, we cannot make any conclusion about the relationship between the two cardinalities for an arbitrary infinite set. In this paper, we give a condition that makes Forster’s theorem, with ${\mathcal{P}}(A)$ replaced by $S(A)$, provable without AC.
The classical theorem of Vizing states that every graph of maximum degree $d$ admits an edge coloring with at most $d+1$ colors. Furthermore, as it was earlier shown by Kőnig, $d$ colors suffice if the graph is bipartite. We investigate the existence of measurable edge colorings for graphings (or measure-preserving graphs). A graphing is an analytic generalization of a bounded-degree graph that appears in various areas, such as sparse graph limits, orbit equivalence and measurable group theory. We show that every graphing of maximum degree $d$ admits a measurable edge coloring with $d+O(\sqrt{d})$ colors; furthermore, if the graphing has no odd cycles, then $d+1$ colors suffice. In fact, if a certain conjecture about finite graphs that strengthens Vizing’s theorem is true, then our method will show that $d+1$ colors are always enough.
Let $L$ be a countable language. We say that a countable infinite $L$-structure ${\mathcal{M}}$ admits an invariant measure when there is a probability measure on the space of $L$-structures with the same underlying set as ${\mathcal{M}}$ that is invariant under permutations of that set, and that assigns measure one to the isomorphism class of ${\mathcal{M}}$. We show that ${\mathcal{M}}$ admits an invariant measure if and only if it has trivial definable closure, that is, the pointwise stabilizer in $\text{Aut}({\mathcal{M}})$ of an arbitrary finite tuple of ${\mathcal{M}}$ fixes no additional points. When ${\mathcal{M}}$ is a Fraïssé limit in a relational language, this amounts to requiring that the age of ${\mathcal{M}}$ have strong amalgamation. Our results give rise to new instances of structures that admit invariant measures and structures that do not.
We consider sets ${\it\Gamma}(n,s,k)$ of narrow clauses expressing that no definition of a size $s$ circuit with $n$ inputs is refutable in resolution R in $k$ steps. We show that every CNF with a short refutation in extended R, ER, can be easily reduced to an instance of ${\it\Gamma}(0,s,k)$ (with $s,k$ depending on the size of the ER-refutation) and, in particular, that ${\it\Gamma}(0,s,k)$ when interpreted as a relativized NP search problem is complete among all such problems provably total in bounded arithmetic theory $V_{1}^{1}$. We use the ideas of implicit proofs from Krajíček [J. Symbolic Logic, 69 (2) (2004), 387–397; J. Symbolic Logic, 70 (2) (2005), 619–630] to define from ${\it\Gamma}(0,s,k)$ a nonrelativized NP search problem $i{\it\Gamma}$ and we show that it is complete among all such problems provably total in bounded arithmetic theory $V_{2}^{1}$. The reductions are definable in theory $S_{2}^{1}$. We indicate how similar results can be proved for some other propositional proof systems and bounded arithmetic theories and how the construction can be used to define specific random unsatisfiable formulas, and we formulate two open problems about them.
We generalize Brooks’ theorem to show that if $G$ is a Borel graph on a standard Borel space $X$ of degree bounded by $d\geqslant 3$ which contains no $(d+1)$-cliques, then $G$ admits a ${\it\mu}$-measurable $d$-coloring with respect to any Borel probability measure ${\it\mu}$ on $X$, and a Baire measurable $d$-coloring with respect to any compatible Polish topology on $X$. The proof of this theorem uses a new technique for constructing one-ended spanning subforests of Borel graphs, as well as ideas from the study of list colorings. We apply the theorem to graphs arising from group actions to obtain factor of IID $d$-colorings of Cayley graphs of degree $d$, except in two exceptional cases.
We prove a direct image theorem stating that the direct image of a Galois formula by a morphism of difference schemes is equivalent to a Galois formula over fields with powers of Frobenius. As a consequence, we obtain an effective quantifier elimination procedure and a precise algebraic–geometric description of definable sets over fields with Frobenii in terms of twisted Galois formulas associated with finite Galois covers of difference schemes.
We construct an increasing ${\it\omega}$-sequence $\langle \boldsymbol{a}_{n}\rangle$ of Turing degrees which forms an initial segment of the Turing degrees, and such that each $\boldsymbol{a}_{n+1}$ is diagonally nonrecursive relative to $\boldsymbol{a}_{n}$. It follows that the DNR principle of reverse mathematics does not imply the existence of Turing incomparable degrees.
For each positive $n$, let $\mathbf{u}_{n}\approx \boldsymbol{v}_{n}$ denote the identity obtained from the Adjan identity $(xy)(yx)(xy)(xy)(yx)\approx (xy)(yx)(yx)(xy)(yx)$ by substituting $(xy)\rightarrow (x_{1}x_{2}\ldots x_{n})$ and $(yx)\rightarrow (x_{n}\ldots x_{2}x_{1})$. We show that every monoid which satisfies $\mathbf{u}_{n}\approx \boldsymbol{v}_{n}$ for each positive $n$ and generates a variety containing the bicyclic monoid is nonfinitely based. This implies that the monoid $U_{2}(\mathbb{T})$ (respectively, $U_{2}(\overline{\mathbb{Z}})$) of two-by-two upper triangular tropical matrices over the tropical semiring $\mathbb{T}=\mathbb{R}\cup \{-\infty \}$ (respectively, $\overline{\mathbb{Z}}=\mathbb{Z}\cup \{-\infty \}$) is nonfinitely based.
We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)15 for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0, 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.
The Weyl–von Neumann theorem asserts that two bounded self-adjoint operators A, B on a Hilbert space H are unitarily equivalent modulo compacts, i.e.uAu* + K = B for some unitary u 𝜖 u(H) and compact self-adjoint operator K, if and only if A and B have the same essential spectrum: σess (A) = σess (B). We study, using methods from descriptive set theory, the problem of whether the above Weyl–von Neumann result can be extended to unbounded operators. We show that if H is separable infinite dimensional, the relation of unitary equivalence modulo compacts for bounded self-adjoint operators is smooth, while the same equivalence relation for general self-adjoint operators contains a dense Gδ-orbit but does not admit classification by countable structures. On the other hand, the apparently related equivalence relation A ~ B ⇔ ∃u 𝜖 U(H) [u(A-i)–1u* - (B-i)–1 is compact] is shown to be smooth.
A direct application of Zorn’s lemma gives that every Lipschitz map $f:X\subset \mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$ has an extension to a Lipschitz map $\widetilde{f}:\mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$. This is analogous to, but easier than, Kirszbraun’s theorem about the existence of Lipschitz extensions of Lipschitz maps $S\subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{\ell }$. Recently, Fischer and Aschenbrenner obtained a definable version of Kirszbraun’s theorem. In this paper, we prove in the $p$-adic context that $\widetilde{f}$ can be taken definable when $f$ is definable, where definable means semi-algebraic or subanalytic (or some intermediary notion). We proceed by proving the existence of definable Lipschitz retractions of $\mathbb{Q}_{p}^{n}$ to the topological closure of $X$ when $X$ is definable.
We describe a model-theoretic setting for the study of Shimura varieties, and study the interaction between model theory and arithmetic geometry in this setting. In particular, we show that the model-theoretic statement of a certain ${\mathcal{L}}_{\unicode[STIX]{x1D714}_{1},\unicode[STIX]{x1D714}}$-sentence having a unique model of cardinality $\aleph _{1}$ is equivalent to a condition regarding certain Galois representations associated with Hodge-generic points. We then show that for modular and Shimura curves this ${\mathcal{L}}_{\unicode[STIX]{x1D714}_{1},\unicode[STIX]{x1D714}}$-sentence has a unique model in every infinite cardinality. In the process, we prove a new characterisation of the special points on any Shimura variety.
We prove an analog of the Yomdin–Gromov lemma for $p$-adic definable sets and more broadly in a non-Archimedean definable context. This analog keeps track of piecewise approximation by Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result to bound the number of rational points of bounded height on the transcendental part of $p$-adic subanalytic sets, and to bound the dimension of the set of complex polynomials of bounded degree lying on an algebraic variety defined over $\mathbb{C}(\!(t)\!)$, in analogy to results by Pila and Wilkie, and by Bombieri and Pila, respectively. Along the way we prove, for definable functions in a general context of non-Archimedean geometry, that local Lipschitz continuity implies piecewise global Lipschitz continuity.