We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Section 1 below I describe two measures of the complexity of a binary relation. J The theorem says that these two measures never disagree very much. Both measures of complexity arose in connection with Saharon Shelah's notion [5] of a stable firstt order theory; Shelah showed in effect that one measure is finite, if, and only if, the other is finite too. This follows trivially from the theorem below. I confess my main aim was not to get the extra information which the theorem provides, but to eliminate Shelah's use of uncountable cardinals, which seemed strangely heavy machinery for proving a purely finitary result. Section 2 below explains the modeltheoretic setting.
A set mapping on pairs over the set S is a function f such that for each unordered pair a of elements of S,f(a) is a subset of S disjoint from a. A subset H of S is said to be free for f if x∉ f({y, z}) for all x, y, z from H. In this paper, we investigate conditions imposed on the range of f which ensure that there is a large set free for f. For example, we show that if f is defined on a set of size K+ + with always |f(a)| <k then f has a free set of size K+ if the range of f satisfies the k-chain condition, or if any two sets in the range of f have an intersection of size less than θ for some θ with θ < K.
An alternative approach is proposed to the basic definitions of the lassical lambda calculus. A proof is sketched of the equivalence of the approach with the classical case. The new formulation simplifies some aspects of the syntactic theory of the lambda calculus. In particular it provides a justification for omitting in syntactic theory discussion of changes of bound variable.