We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate certain families of meromorphic Siegel modular functions on which Galois groups act in a natural way. By using Shimura's reciprocity law we construct some algebraic numbers in the ray class fields of CM-fields in terms of special values of functions in these Siegel families.
The Weierstrass function σ(u) associated with an elliptic curve can be generalized in a natural way to an entire function associated with a higher genus algebraic curve. This generalized multivariate sigma function has been investigated since the pioneering work of Felix Klein. The present paper shows Hurwitz integrality of the coefficients of the power series expansion around the origin of the higher genus sigma function associated with a certain plane curve, which is called an (n, s)-curve or a plane telescopic curve. For the prime (2), the expansion of the sigma function is not Hurwitz integral, but its square is. This paper clarifies the precise structure of this phenomenon. In Appendix A, computational examples for the trigonal genus 3 curve ((3, 4)-curve) y3 + (μ1x + μ4)y2 + (μ2x2 + μ5x + μ8)y = x4 + μ3x3 + μ6x2 + μ9x + μ12 (where μj are constants) are given.
We show that the image of the Abel–Jacobi map admits functorially a model over the field of definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show that this model over the base field is dominated by the Albanese variety of a product of components of the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a result of Deligne on complete intersections of Hodge level 1.
Let $Y$ be an abelian variety over a subfield $k\subset \mathbb{C}$ that is of finite type over $\mathbb{Q}$. We prove that if the Mumford–Tate conjecture for $Y$ is true, then also some refined integral and adelic conjectures due to Serre are true for $Y$. In particular, if a certain Hodge-maximality condition is satisfied, we obtain an adelic open image theorem for the Galois representation on the (full) Tate module of $Y$. We also obtain an (unconditional) adelic open image theorem for K3 surfaces. These results are special cases of a more general statement for the image of a natural adelic representation of the fundamental group of a Shimura variety.
We prove an explicit formula for the arithmetic intersection number of diagonal cycles on GSpin Rapoport–Zink spaces in the minuscule case. This is a local problem arising from the arithmetic Gan–Gross–Prasad conjecture for orthogonal Shimura varieties. Our formula can be viewed as an orthogonal counterpart of the arithmetic–geometric side of the arithmetic fundamental lemma proved by Rapoport–Terstiege–Zhang in the minuscule case.
In this paper we construct a $\mathbb{Q}$-linear tannakian category $\mathsf{MEM}_{1}$ of universal mixed elliptic motives over the moduli space ${\mathcal{M}}_{1,1}$ of elliptic curves. It contains $\mathsf{MTM}$, the category of mixed Tate motives unramified over the integers. Each object of $\mathsf{MEM}_{1}$ is an object of $\mathsf{MTM}$ endowed with an action of $\text{SL}_{2}(\mathbb{Z})$ that is compatible with its structure. Universal mixed elliptic motives can be thought of as motivic local systems over ${\mathcal{M}}_{1,1}$ whose fiber over the tangential base point $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}q$ at the cusp is a mixed Tate motive. The basic structure of the tannakian fundamental group of $\mathsf{MEM}$ is determined and the lowest order terms of a set (conjecturally, a minimal generating set) of relations are deduced from computations of Brown. This set of relations includes the arithmetic relations, which describe the ‘infinitesimal Galois action’. We use the presentation to give a new and more conceptual proof of the Ihara–Takao congruences.
In this paper, we prove some conjectures of K. Stolarsky concerning the first and third moments of the Beatty sequences with the golden section and its square.
Let $E$ be an elliptic curve over a field $k$. Let $R:=\operatorname{End}E$. There is a functor $\mathscr{H}\!\mathit{om}_{R}(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\operatorname{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories. We also prove a partial generalization in which $E$ is replaced by a suitable higher-dimensional abelian variety over $\mathbb{F}_{p}$.
Colmez [Périodes des variétés abéliennes a multiplication complexe, Ann. of Math. (2)138(3) (1993), 625–683; available at http://www.math.jussieu.fr/∼colmez] conjectured a product formula for periods of abelian varieties over number fields with complex multiplication and proved it in some cases. His conjecture is equivalent to a formula for the Faltings height of CM abelian varieties in terms of the logarithmic derivatives at $s=0$ of certain Artin $L$-functions. In a series of articles we investigate the analog of Colmez’s theory in the arithmetic of function fields. There abelian varieties are replaced by Drinfeld modules and their higher-dimensional generalizations, so-called $A$-motives. In the present article we prove the product formula for the Carlitz module and we compute the valuations of the periods of a CM $A$-motive at all finite places in terms of Artin $L$-series. The latter is achieved by investigating the local shtukas associated with the $A$-motive.
Let $G$ be a connected linear algebraic group over a number field $k$. Let $U{\hookrightarrow}X$ be a $G$-equivariant open embedding of a $G$-homogeneous space $U$ with connected stabilizers into a smooth $G$-variety $X$. We prove that $X$ satisfies strong approximation with Brauer–Manin condition off a set $S$ of places of $k$ under either of the following hypotheses:
(i)$S$ is the set of archimedean places;
(ii)$S$ is a non-empty finite set and $\bar{k}^{\times }=\bar{k}[X]^{\times }$.
The proof builds upon the case $X=U$, which has been the object of several works.
In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of $\ell$-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper, we confirm Ogus’ prediction for some families of abelian varieties. These families include geometrically simple abelian varieties of prime dimension that have non-trivial endomorphism ring. The proof uses a crystalline analogue of Faltings’ isogeny theorem due to Bost and the known cases of the Mumford–Tate conjecture.
We construct the $\unicode[STIX]{x1D6EC}$-adic crystalline and Dieudonné analogues of Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology, and employ integral $p$-adic Hodge theory to prove $\unicode[STIX]{x1D6EC}$-adic comparison isomorphisms between these cohomologies and the $\unicode[STIX]{x1D6EC}$-adic de Rham cohomology studied in Cais [The geometry of Hida families I:$\unicode[STIX]{x1D6EC}$-adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s $\unicode[STIX]{x1D6EC}$-adic étale cohomology. As applications of our work, we provide a ‘cohomological’ construction of the family of $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules attached to Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology by Dee [$\unicode[STIX]{x1D6F7}$–$\unicode[STIX]{x1D6E4}$modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we give a new and purely geometric proof of Hida’s finiteness and control theorems. We also prove suitable $\unicode[STIX]{x1D6EC}$-adic duality theorems for each of the cohomologies we construct.
We first show that every algebraic torus over any field, not necessarily split, can be realized as the special fiber of a semi-abelian scheme whose generic fiber is an absolutely simple abelian variety. Then we investigate which algebraic tori can be thus obtained, when we require the generic fiber of the semi-abelian scheme to carry non-trivial endomorphism structures.
We investigate the approximation of quadratic Dirichlet $L$-functions over function fields by truncations of their Euler products. We first establish representations for such $L$-functions as products over prime polynomials times products over their zeros. This is the hybrid formula in function fields. We then prove that partial Euler products are good approximations of an $L$-function away from its zeros and that, when the length of the product tends to infinity, we recover the original $L$-function. We also obtain explicit expressions for the arguments of quadratic Dirichlet $L$-functions over function fields and for the arguments of their partial Euler products. In the second part of the paper we construct, for each quadratic Dirichlet $L$-function over a function field, an auxiliary function based on the approximate functional equation that equals the $L$-function on the critical line. We also construct a parametrized family of approximations of these auxiliary functions and prove that the Riemann hypothesis holds for them and that their zeros are related to those of the associated $L$-function. Finally, we estimate the counting function for the zeros of this family of approximations, show that these zeros cluster near those of the associated $L$-function, and that, when the parameter is not too large, almost all the zeros of the approximations are simple.
Let $p$ be a prime number and $F$ a totally real number field. For each prime $\mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_{\mathfrak{p}}$ acting on $(\text{mod}\,p^{m})$ Katz Hilbert modular classes which agrees with the classical Hecke operator at $\mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of Calegari and Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight $\mathbf{1}$ are unramified at $p$ when $[F:\mathbb{Q}]=2$. Some partial and some conjectural results are obtained when $[F:\mathbb{Q}]>2$.
Let $K$ be a (non-archimedean) local field and let $F$ be the function field of a curve over $K$. Let $D$ be a central simple algebra over $F$ of period $n$ and $\unicode[STIX]{x1D706}\in F^{\ast }$. We show that if $n$ is coprime to the characteristic of the residue field of $K$ and $D\cdot (\unicode[STIX]{x1D706})=0$ in $H^{3}(F,\unicode[STIX]{x1D707}_{n}^{\otimes 2})$, then $\unicode[STIX]{x1D706}$ is a reduced norm from $D$. This leads to a Hasse principle for the group $\operatorname{SL}_{1}(D)$, namely, an element $\unicode[STIX]{x1D706}\in F^{\ast }$ is a reduced norm from $D$ if and only if it is a reduced norm locally at all discrete valuations of $F$.
Eisenstein classes of Siegel varieties are motivic cohomology classes defined as pull-backs by torsion sections of the polylogarithm prosheaf on the universal abelian scheme. By reduction to the Hilbert–Blumenthal case, we prove that the Betti realization of these classes on Siegel varieties of arbitrary genus have non-trivial residue on zero-dimensional strata of the Baily–Borel–Satake compactification. A direct corollary is the non-vanishing of a higher regulator map.
Modular curves like X0(N) and X1(N) appear very frequently in arithmetic geometry. While their complex points are obtained as a quotient of the upper half plane by some subgroups of SL2(ℤ), they allow for a more arithmetic description as a solution to a moduli problem. We wish to give such a moduli description for two other modular curves, denoted here by Xnsp(p) and Xnsp+(p) associated to non-split Cartan subgroups and their normaliser in GL2(𝔽p). These modular curves appear for instance in Serre's problem of classifying all possible Galois structures of p-torsion points on elliptic curves over number fields. We give then a moduli-theoretic interpretation and a new proof of a result of Chen (Proc. London Math. Soc. (3) 77(1) (1998), 1–38; J. Algebra231(1) (2000), 414–448).
For the modular variety attached to an arithmetic subgroup of an indefinite unitary group of signature $(1,n+1)$, with $n\geqslant 1$, we study Heegner divisors in the local Picard group over a boundary component of a compactification. For this purpose, we introduce local Borcherds products. We obtain a precise criterion for local Heegner divisors to be torsion elements in the Picard group, and further, as an application, we show that the obstructions to a local Heegner divisor being a torsion element can be described by certain spaces of vector-valued elliptic cusp forms, transforming under a Weil representation.