We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $M$ be the Shimura variety associated to the group of spinor similitudes of a quadratic space over $\mathbb{Q}$ of signature $(n,2)$. We prove a conjecture of Bruinier and Yang, relating the arithmetic intersection multiplicities of special divisors and complex multiplication points on $M$ to the central derivatives of certain $L$-functions. Each such $L$-function is the Rankin–Selberg convolution associated with a cusp form of half-integral weight $n/2+1$, and the weight $n/2$ theta series of a positive definite quadratic space of rank $n$. When $n=1$ the Shimura variety $M$ is a classical quaternionic Shimura curve, and our result is a variant of the Gross–Zagier theorem on heights of Heegner points.
Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves over $\mathbb{Q}$ with good reduction away from 3, up to $\mathbb{Q}$-isomorphism. A correspondence between the isomorphism classes of such curves and certain quintic binary forms possessing a rational linear factor is established. An exhaustive list of integral models is determined and an application to a question of Ihara is discussed.
Assuming Vojta’s conjecture, and building on recent work of the authors, we prove that, for a fixed number field $K$ and a positive integer $g$, there is an integer $m_{0}$ such that for any $m>m_{0}$ there is no principally polarized abelian variety $A/K$ of dimension $g$ with full level-$m$ structure. To this end, we develop a version of Vojta’s conjecture for Deligne–Mumford stacks, which we deduce from Vojta’s conjecture for schemes.
Building on recent work of Bhargava, Elkies and Schnidman and of Kriz and Li, we produce infinitely many smooth cubic surfaces defined over the field of rational numbers that contain rational points.
For a finite field of odd cardinality $q$, we show that the sequence of iterates of $aX^{2}+c$, starting at $0$, always recurs after $O(q/\text{log}\log q)$ steps. For $X^{2}+1$, the same is true for any starting value. We suggest that the traditional “birthday paradox” model is inappropriate for iterates of $X^{3}+c$, when $q$ is 2 mod 3.
By constructing suitable Borcherds forms on Shimura curves and using Schofer’s formula for norms of values of Borcherds forms at CM points, we determine all of the equations of hyperelliptic Shimura curves $X_{0}^{D}(N)$. As a byproduct, we also address the problem of whether a modular form on Shimura curves $X_{0}^{D}(N)/W_{D,N}$ with a divisor supported on CM divisors can be realized as a Borcherds form, where $X_{0}^{D}(N)/W_{D,N}$ denotes the quotient of $X_{0}^{D}(N)$ by all of the Atkin–Lehner involutions. The construction of Borcherds forms is done by solving certain integer programming problems.
We determine the Galois representations inside the $\ell$-adic cohomology of some quaternionic and related unitary Shimura varieties at ramified places. The main results generalize the previous works of Reimann and Kottwitz in this setting to arbitrary levels at $p$, and confirm the expected description of the cohomology due to Langlands and Kottwitz.
We determine the Galois representations inside the $\ell$-adic cohomology of some unitary Shimura varieties at split places where they admit uniformization by finite products of Drinfeld upper half spaces. Our main results confirm Langlands–Kottwitz’s description of the cohomology of Shimura varieties in new cases.
To a pair of elliptic curves, one can naturally attach two K3 surfaces: the Kummer surface of their product and a double cover of it, called the Inose surface. They have prominently featured in many interesting constructions in algebraic geometry and number theory. There are several more associated elliptic K3 surfaces, obtained through base change of the Inose surface; these have been previously studied by Masato Kuwata. We give an explicit description of the geometric Mordell–Weil groups of each of these elliptic surfaces in the generic case (when the elliptic curves are non-isogenous). In the nongeneric case, we describe a method to calculate explicitly a finite index subgroup of the Mordell–Weil group, which may be saturated to give the full group. Our methods rely on several interesting group actions, the use of rational elliptic surfaces, as well as connections to the geometry of low degree curves on cubic and quartic surfaces. We apply our techniques to compute the full Mordell–Weil group in several examples of arithmetic interest, arising from isogenous elliptic curves with complex multiplication, for which these K3 surfaces are singular.
We construct a stable formal model of a Lubin–Tate curve with level three, and study the action of a Weil group and a division algebra on its stable reduction. Further, we study a structure of cohomology of the Lubin–Tate curve. Our study is purely local and includes the case where the characteristic of the residue field of a local field is two.
We use Lau’s classification of 2-divisible groups using Dieudonné displays to construct integral canonical models for Shimura varieties of abelian type at 2-adic places where the level is hyperspecial.
In this paper we study the variation of the $p$-Selmer rank parities of $p$-twists of a principally polarized Abelian variety over an arbitrary number field $K$ and show, under certain assumptions, that this parity is periodic with an explicit period. Our result applies in particular to principally polarized Abelian varieties with full $K$-rational $p$-torsion subgroup, arbitrary elliptic curves, and Jacobians of hyperelliptic curves. Assuming the Shafarevich–Tate conjecture, our result allows one to classify the rank parities of all quadratic twists of an elliptic or hyperelliptic curve after a finite calculation.
We extend the group-theoretic construction of local models of Pappas and Zhu [Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math. 194 (2013), 147–254] to the case of groups obtained by Weil restriction along a possibly wildly ramified extension. This completes the construction of local models for all reductive groups when $p\geqslant 5$. We show that the local models are normal with special fiber reduced and study the monodromy action on the sheaves of nearby cycles. As a consequence, we prove a conjecture of Kottwitz that the semi-simple trace of Frobenius gives a central function in the parahoric Hecke algebra. We also introduce a notion of splitting model and use this to study the inertial action in the case of an unramified group.
Consider a system of polynomials in many variables over the ring of integers of a number field $K$. We prove an asymptotic formula for the number of integral zeros of this system in homogeneously expanding boxes. As a consequence, any smooth and geometrically integral variety $X\subseteq \mathbb{P}_{K}^{m}$ satisfies the Hasse principle, weak approximation, and the Manin–Peyre conjecture if only its dimension is large enough compared to its degree. This generalizes work of Skinner, who considered the case where all polynomials have the same degree, and recent work of Browning and Heath-Brown, who considered the case where $K=\mathbb{Q}$. Our main tool is Skinner’s number field version of the Hardy–Littlewood circle method. As a by-product, we point out and correct an error in Skinner’s treatment of the singular integral.
Let $F$ be a totally real field in which a prime $p$ is unramified. We define the Goren–Oort stratification of the characteristic-$p$ fiber of a quaternionic Shimura variety of maximal level at $p$. We show that each stratum is a $(\mathbb{P}^{1})^{r}$-bundle over other quaternionic Shimura varieties (for an appropriate integer $r$). As an application, we give a necessary condition for the ampleness of a modular line bundle on a quaternionic Shimura variety in characteristic $p$.
We study the automorphisms of the nonsplit Cartan modular curves $X_{\text{ns}}(p)$ of prime level $p$. We prove that if $p\geqslant 29$ all the automorphisms preserve the cusps. Furthermore, if $p\equiv 1~\text{mod}~12$ and $p\neq 13$, the automorphism group is generated by the modular involution given by the normalizer of a nonsplit Cartan subgroup of $\text{GL}_{2}(\mathbb{F}_{p})$. We also prove that for every $p\geqslant 29$ the existence of an exceptional rational automorphism would give rise to an exceptional rational point on the modular curve $X_{\text{ns}}^{+}(p)$ associated to the normalizer of a nonsplit Cartan subgroup of $\text{GL}_{2}(\mathbb{F}_{p})$.
Most systematic tables of data associated to ranks of elliptic curves order the curves by conductor. Recent developments, led by work of Bhargava and Shankar studying the average sizes of $n$-Selmer groups, have given new upper bounds on the average algebraic rank in families of elliptic curves over $\mathbb{Q}$, ordered by height. We describe databases of elliptic curves over $\mathbb{Q}$, ordered by height, in which we compute ranks and $2$-Selmer group sizes, the distributions of which may also be compared to these theoretical results. A striking new phenomenon that we observe in our database is that the average rank eventually decreases as height increases.
Consider two ordinary elliptic curves $E,E^{\prime }$ defined over a finite field $\mathbb{F}_{q}$, and suppose that there exists an isogeny $\unicode[STIX]{x1D713}$ between $E$ and $E^{\prime }$. We propose an algorithm that determines $\unicode[STIX]{x1D713}$ from the knowledge of $E$, $E^{\prime }$ and of its degree $r$, by using the structure of the $\ell$-torsion of the curves (where $\ell$ is a prime different from the characteristic $p$ of the base field). Our approach is inspired by a previous algorithm due to Couveignes, which involved computations using the $p$-torsion on the curves. The most refined version of that algorithm, due to De Feo, has a complexity of $\tilde{O} (r^{2})p^{O(1)}$ base field operations. On the other hand, the cost of our algorithm is $\tilde{O} (r^{2})\log (q)^{O(1)}$, for a large class of inputs; this makes it an interesting alternative for the medium- and large-characteristic cases.
We study the elliptic curves in Cremona’s tables that are predicted by the Birch–Swinnerton-Dyer conjecture to have elements of order $7$ in their Tate–Shafarevich group. We show that in many cases these elements are visible in an abelian surface or abelian 3-fold.
We report on our project to find explicit examples of K3 surfaces having real or complex multiplication. Our strategy is to search through the arithmetic consequences of RM and CM. In order to do this, an efficient method is needed for point counting on surfaces defined over finite fields. For this, we describe algorithms that are $p$-adic in nature.