We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the growth of $\unicode[STIX]{x0428}$ and $p^{\infty }$-Selmer groups for isogenous abelian varieties in towers of number fields, with an emphasis on elliptic curves. The growth types are usually exponential, as in the ‘positive ${\it\mu}$-invariant’ setting in the Iwasawa theory of elliptic curves. The towers we consider are $p$-adic and $l$-adic Lie extensions for $l\neq p$, in particular cyclotomic and other $\mathbb{Z}_{l}$-extensions.
For $n=2$ the statement in the title is a theorem of B. Poonen (2009). He uses a one-parameter family of varieties together with a theorem of Coray, Sansuc and one of the authors (1980), on the Brauer–Manin obstruction for rational points on these varieties. For $n=p$, $p$ any prime number, A. Várilly-Alvarado and B. Viray (2012) considered analogous families of varieties. Replacing this family by its $(2p+1)$th symmetric power, we prove the statement in the title using a theorem on the Brauer–Manin obstruction for rational points on such symmetric powers. The latter theorem is based on work of one of the authors with Swinnerton-Dyer (1994) and with Skorobogatov and Swinnerton-Dyer (1998), work generalising results of Salberger (1988).
In this paper we examine solutions in the Gaussian integers to the Diophantine equation $ax^{4}+by^{4}=cz^{2}$ for different choices of $a,b$ and $c$. Elliptic curve methods are used to show that these equations have a finite number of solutions or have no solution.
In a recent important paper, Hoffstein and Hulse [Multiple Dirichlet series and shifted convolutions, arXiv:1110.4868v2] generalized the notion of Rankin–Selberg convolution $L$-functions by defining shifted convolution$L$-functions. We investigate symmetrized versions of their functions, and we prove that the generating functions of certain special values are linear combinations of weakly holomorphic quasimodular forms and “mixed mock modular” forms.
We show that a weakly holomorphic modular function can be written as a sum of modular units of higher level. Furthermore, we find a necessary and sufficient condition for a meromorphic Siegel modular function of degree g to have neither a zero nor a pole on a certain subset of the Siegel upper half-space .
We discuss heuristic asymptotic formulae for the number of isogeny classes of pairing-friendly abelian varieties of fixed dimension $g\geqslant 2$ over prime finite fields. In each formula, the embedding degree $k\geqslant 2$ is fixed and the rho-value is bounded above by a fixed real ${\it\rho}_{0}>1$. The first formula involves families of ordinary abelian varieties whose endomorphism ring contains an order in a fixed CM-field $K$ of degree $g$ and generalizes previous work of the first author when $g=1$. It suggests that, when ${\it\rho}_{0}<g$, there are only finitely many such isogeny classes. On the other hand, there should be infinitely many such isogeny classes when ${\it\rho}_{0}>g$. The second formula involves families whose endomorphism ring contains an order in a fixed totally real field $K_{0}^{+}$ of degree $g$. It suggests that, when ${\it\rho}_{0}>2g/(g+2)$ (and in particular when ${\it\rho}_{0}>1$ if $g=2$), there are infinitely many isogeny classes of $g$-dimensional abelian varieties over prime fields whose endomorphism ring contains an order of $K_{0}^{+}$. We also discuss the impact that polynomial families of pairing-friendly abelian varieties has on our heuristics, and review the known cases where they are expected to provide more isogeny classes than predicted by our heuristic formulae.
In this article we explain how the results in our previous article on ‘algebraic Hecke characters and compatible systems of mod $p$ Galois representations over global fields’ allow one to attach a Hecke character to every cuspidal Drinfeld modular eigenform from its associated crystal that was constructed in earlier work of the author. On the technical side, we prove along the way a number of results on endomorphism rings of ${\it\tau}$-sheaves and crystals. These are needed to exhibit the close relation between Hecke operators as endomorphisms of crystals on the one side and Frobenius automorphisms acting on étale sheaves associated to crystals on the other. We also present some partial results on the ramification of Hecke characters associated to Drinfeld modular eigenforms. An important phenomenon absent from the case of classical modular forms is that ramification can also result from places of modular curves of good but non-ordinary reduction. In an appendix, jointly with Centeleghe we prove some basic results on $p$-adic Galois representations attached to $\text{GL}_{2}$-type cuspidal automorphic forms over global fields of characteristic $p$.
Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$. The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$. We prove the non-triviality of the $p$-adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$-anticyclotomic extension of $K$. The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$-anticyclotomic extension of $K$.
This paper presents a new result concerning the distribution of 2-Selmer ranks in the quadratic twist family of an elliptic curve over an arbitrary number field $K$ with a single point of order two that does not have a cyclic 4-isogeny defined over its two-division field. We prove that at least half of all the quadratic twists of such an elliptic curve have arbitrarily large 2-Selmer rank, showing that the distribution of 2-Selmer ranks in the quadratic twist family of such an elliptic curve differs from the distribution of 2-Selmer ranks in the quadratic twist family of an elliptic curve having either no rational two-torsion or full rational two-torsion.
We consider a certain family of Kudla–Rapoport cycles on an integral model of a Shimura variety attached to a unitary group of signature (1, 1), and prove that the arithmetic degrees of these cycles are Fourier coefficients of the central derivative of an Eisenstein series of genus 2. The integral model in question parameterizes abelian surfaces equipped with a non-principal polarization and an action of an imaginary quadratic number ring, and in this setting the cycles are degenerate: they may contain components of positive dimension. This result can be viewed as confirmation, in the degenerate setting and for dimension 2, of conjectures of Kudla and Kudla–Rapoport that predict relations between the intersection numbers of special cycles and the Fourier coefficients of automorphic forms.
We show that arithmetic local constants attached by Mazur and Rubin to pairs of self-dual Galois representations which are congruent modulo a prime number $p>2$ are compatible with the usual local constants at all primes not dividing $p$ and in two special cases also at primes dividing $p$. We deduce new cases of the $p$-parity conjecture for Selmer groups of abelian varieties with real multiplication (Theorem 4.14) and elliptic curves (Theorem 5.10).
We construct an Euler system attached to a weight 2 modular form twisted by a Grössencharacter of an imaginary quadratic field $K$, and apply this to bounding Selmer groups.
For an elliptic curve $E/\mathbb{Q}$ without complex multiplication we study the distribution of Atkin and Elkies primes $\ell$, on average, over all good reductions of $E$ modulo primes $p$. We show that, under the generalized Riemann hypothesis, for almost all primes $p$ there are enough small Elkies primes $\ell$ to ensure that the Schoof–Elkies–Atkin point-counting algorithm runs in $(\log p)^{4+o(1)}$ expected time.
We find defining equations for the Shimura curve of discriminant 15 over $\mathbb{Z}[1/15]$. We then determine the graded ring of automorphic forms over the 2-adic integers, as well as the higher cohomology. We apply this to calculate the homotopy groups of a spectrum of ‘topological automorphic forms’ associated to this curve, as well as one associated to a quotient by an Atkin–Lehner involution.
Let $A$ be an abelian variety of dimension $g$ together with a principal polarization ${\it\phi}:A\rightarrow \hat{A}$ defined over a field $k$. Let $\ell$ be an odd integer prime to the characteristic of $k$ and let $K$ be a subgroup of $A[\ell ]$ which is maximal isotropic for the Riemann form associated to ${\it\phi}$. We suppose that $K$ is defined over $k$ and let $B=A/K$ be the quotient abelian variety together with a polarization compatible with ${\it\phi}$. Then $B$, as a polarized abelian variety, and the isogeny $f:A\rightarrow B$ are also defined over $k$. In this paper, we describe an algorithm that takes as input a theta null point of $A$ and a polynomial system defining $K$ and outputs a theta null point of $B$ as well as formulas for the isogeny $f$. We obtain a complexity of $\tilde{O} (\ell ^{(rg)/2})$ operations in $k$ where $r=2$ (respectively, $r=4$) if $\ell$ is a sum of two (respectively, four) squares which constitutes an improvement over the algorithm described in Cosset and Robert (Math. Comput. (2013) accepted for publication). We note that the algorithm is quasi-optimal if $\ell$ is a sum of two squares since its complexity is quasi-linear in the degree of $f$.
We study the problem of efficiently constructing a curve $C$ of genus $2$ over a finite field $\mathbb{F}$ for which either the curve $C$ itself or its Jacobian has a prescribed number $N$ of $\mathbb{F}$-rational points.
In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required genus-$2$ curves necessarily takes time exponential in the size of its input.
On the other hand, we provide an algorithm for producing a genus-$2$ curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-$2$ curve having exactly $10^{2014}+9703$ (prime) points, and two genus-$2$ curves each having exactly $10^{2013}$ points.
In an appendix we provide a complete parametrization, over an arbitrary base field $k$ of characteristic neither two nor three, of the family of genus-$2$ curves over $k$ that have $k$-rational degree-$3$ maps to elliptic curves, including formulas for the genus-$2$ curves, the associated elliptic curves, and the degree-$3$ maps.
Let p be a prime and K a number field of degree p. We determine the finiteness of the number of elliptic curves, up to K-isomorphism, having a prescribed property, where this property is either that the curve contains a fixed torsion group as a subgroup or that it has a cyclic isogeny of prescribed degree.
We construct $p$-adic families of Klingen–Eisenstein series and $L$-functions for cusp forms (not necessarily ordinary) unramified at an odd prime $p$ on definite unitary groups of signature $(r,0)$ (for any positive integer $r$) for a quadratic imaginary field ${\mathcal{K}}$ split at $p$. When $r=2$, we show that the constant term of the Klingen–Eisenstein family is divisible by a certain $p$-adic $L$-function.
Let $A$ be an abelian variety over a global field $K$ of characteristic $p\geqslant 0$. If $A$ has nontrivial (respectively full) $K$-rational $l$-torsion for a prime $l\neq p$, we exploit the fppf cohomological interpretation of the $l$-Selmer group $\text{Sel}_{l}\,A$ to bound $\#\text{Sel}_{l}\,A$ from below (respectively above) in terms of the cardinality of the $l$-torsion subgroup of the ideal class group of $K$. Applied over families of finite extensions of $K$, the bounds relate the growth of Selmer groups and class groups. For function fields, this technique proves the unboundedness of $l$-ranks of class groups of quadratic extensions of every $K$ containing a fixed finite field $\mathbb{F}_{p^{n}}$ (depending on $l$). For number fields, it suggests a new approach to the Iwasawa ${\it\mu}=0$ conjecture through inequalities, valid when $A(K)[l]\neq 0$, between Iwasawa invariants governing the growth of Selmer groups and class groups in a $\mathbb{Z}_{l}$-extension.