We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct an elliptic curve over the field of rational functions with torsion group $\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/4\mathbb{Z}$ and rank equal to four, and an elliptic curve over $\mathbb{Q}$ with the same torsion group and rank nine. Both results improve previous records for ranks of curves of this torsion group. They are obtained by considering elliptic curves induced by Diophantine triples.
have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.
Let $Q(N;q,a)$ be the number of squares in the arithmetic progression $qn+a$, for $n=0$,$1,\ldots,N-1$, and let $Q(N)$ be the maximum of $Q(N;q,a)$ over all non-trivial arithmetic progressions $qn + a$. Rudin’s conjecture claims that $Q(N)=O(\sqrt{N})$, and in its stronger form that $Q(N)=Q(N;24,1)$ if $N\ge 6$. We prove the conjecture above for $6\le N\le 52$. We even prove that the arithmetic progression $24n+1$ is the only one, up to equivalence, that contains $Q(N)$ squares for the values of $N$ such that $Q(N)$ increases, for $7\le N\le 52$ ($N=8,13,16,23,27,36,41$ and $52$).
We construct new indecomposable elements in the higher Chow group $CH^2(A,1)$ of a principally polarized Abelian surface over a $p$-adic local field, which generalize an element constructed by Collino [Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic Jacobians, J. Algebraic Geom. 6 (1997), 393–415]. These elements are constructed using a generalization, due to Birkenhake and Wilhelm [Humbert surfaces and the Kummer plane, Trans. Amer. Math. Soc. 355 (2003), 1819–1841 (electronic)], of a classical construction of Humbert. They can be used to prove a non-Archimedean analogue of the Hodge-${\mathcal{D}}$-conjecture – namely, the surjectivity of the boundary map in the localization sequence – in the case where the Abelian surface has good and ordinary reduction.
Let $A/K$ be an abelian variety over a function field of characteristic $p>0$ and let $\ell $ be a prime number ($\ell =p$ allowed). We prove the following: the parity of the corank $r_\ell $ of the $\ell $-discrete Selmer group of $A/K$ coincides with the parity of the order at $s=1$ of the Hasse–Weil $L$-function of $A/K$. We also prove the analogous parity result for pure $\ell $-adic sheaves endowed with a nice pairing and in particular for the congruence Zeta function of a projective smooth variety over a finite field. Finally, we prove that the full Birch and Swinnerton-Dyer conjecture is equivalent to the Artin–Tate conjecture.
We explain how the André–Oort conjecture for a general Shimura variety can be deduced from the hyperbolic Ax–Lindemann conjecture, a good lower bound for Galois orbits of special points and the definability, in the $o$-minimal structure ${ \mathbb{R} }_{\mathrm{an} , \mathrm{exp} } $, of the restriction to a fundamental set of the uniformizing map of a Shimura variety. These ingredients are known in some important cases. As a consequence a proof of the André–Oort conjecture for projective special subvarieties of ${ \mathcal{A} }_{6}^{N} $ for an arbitrary integer $N$ is given.
We determine the conditions under which singular values of multiple $\eta $-quotients of square-free level, not necessarily prime to six, yield class invariants; that is, algebraic numbers in ring class fields of imaginary-quadratic number fields. We show that the singular values lie in subfields of the ring class fields of index ${2}^{{k}^{\prime } - 1} $ when ${k}^{\prime } \geq 2$ primes dividing the level are ramified in the imaginary-quadratic field, which leads to faster computations of elliptic curves with prescribed complex multiplication. The result is generalised to singular values of modular functions on ${ X}_{0}^{+ } (p)$ for $p$ prime and ramified.
We prove a “special point” result for products of elliptic modular surfaces, elliptic curves, multiplicative groups and complex lines, and deduce a result about vanishing linear combinations of singular moduli and roots of unity.
We extend our previous work in collaboration with Ngô Bao Châu and give a fixed point formula for the elliptic part of moduli spaces of $G$-shtukas with arbitrary modifications. Our formula is similar to the fixed point formula of Kottwitz for certain Shimura varieties. Our method is inspired by that of Kottwitz and simpler than that of Lafforgue for the fixed point formula of the moduli space of Drinfeld $\text{GL} (r)$-shtukas.
Using the $\ell $-invariant constructed in our previous paper we prove a
Mazur–Tate–Teitelbaum-style formula for derivatives of $p$-adic $L$-functions of modular forms at trivial zeros. The novelty of this
result is to cover the near-central point case. In the central point case our formula
coincides with the Mazur–Tate–Teitelbaum conjecture proved by Greenberg and Stevens
and by Kato, Kurihara and Tsuji at the end of the 1990s.
We study the postcritically finite maps within the moduli space of complex polynomial dynamical systems. We characterize rational curves in the moduli space containing an infinite number of postcritically finite maps, in terms of critical orbit relations, in two settings: (1) rational curves that are polynomially parameterized; and (2) cubic polynomials defined by a given fixed point multiplier. We offer a conjecture on the general form of algebraic subvarieties in the moduli space of rational maps on ${ \mathbb{P} }^{1} $ containing a Zariski-dense subset of postcritically finite maps.
Let $k$ be a number field with algebraic closure $ \overline{k} $, and let $S$ be a finite set of primes of $k$ containing all the infinite ones. Let $E/ k$ be an elliptic curve, ${\mit{\Gamma} }_{0} $ be a finitely generated subgroup of $E( \overline{k} )$, and $\mit{\Gamma} \subseteq E( \overline{k} )$ the division group attached to ${\mit{\Gamma} }_{0} $. Fix an effective divisor $D$ of $E$ with support containing either: (i) at least two points whose difference is not torsion; or (ii) at least one point not in $\mit{\Gamma} $. We prove that the set of ‘integral division points on $E( \overline{k} )$’, i.e., the set of points of $\mit{\Gamma} $ which are $S$-integral on $E$ relative to $D, $ is finite. We also prove the ${ \mathbb{G} }_{\mathrm{m} } $-analogue of this theorem, thereby establishing the 1-dimensional case of a general conjecture we pose on integral division points on semi-abelian varieties.
We consider the 33 conjugacy classes of genus zero, torsion-free modular subgroups, computing ramification data and Grothendieck’s dessins d’enfants. In the particular case of the index 36 subgroups, the corresponding Calabi–Yau threefolds are identified, in analogy with the index 24 cases being associated to K3 surfaces. In a parallel vein, we study the 112 semi-stable elliptic fibrations over ${ \mathbb{P} }^{1} $ as extremal K3 surfaces with six singular fibres. In each case, a representative of the corresponding class of subgroups is identified by specifying a generating set for that representative.
Given an abelian variety $A$ of dimension $g$ over a number field $K$, and a prime $\ell $, the ${\ell }^{n} $-torsion points of $A$ give rise to a representation ${\rho }_{A, {\ell }^{n} } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ( \mathbb{Z} / {\ell }^{n} \mathbb{Z} )$. In particular, we get a mod-$\ell $representation${\rho }_{A, \ell } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{F} }_{\ell } )$ and an $\ell $-adic representation${\rho }_{A, {\ell }^{\infty } } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{Z} }_{\ell } )$. In this paper, we describe the possible determinants of
subquotients of these two representations. These two lists turn out to be remarkably
similar.
Applying our results in dimension $g= 1$, we recover a generalized version of a theorem of Momose on isogeny
characters of elliptic curves over number fields, and obtain, conditionally on the
Generalized Riemann Hypothesis, a generalization of Mazur’s bound on rational
isogenies of prime degree to number fields.
The arithmetic fundamental lemma conjecture of the third author connects the derivative of an orbital integral on a symmetric space with an intersection number on a formal moduli space of $p$-divisible groups of Picard type. It arises in the relative trace formula approach to the arithmetic Gan–Gross–Prasad conjecture. We prove this conjecture in the minuscule case.
Let $ \mathcal{X} $ be a curve over ${ \mathbb{F} }_{q} $ and let $N( \mathcal{X} )$, $g( \mathcal{X} )$ be its number of rational points and genus respectively. The Ihara constant $A(q)$ is defined by $A(q)= {\mathrm{lim~sup} }_{g( \mathcal{X} )\rightarrow \infty } N( \mathcal{X} )/ g( \mathcal{X} )$. In this paper, we employ a variant of Serre’s class field tower method to obtain an improvement of the best known lower bounds on $A(2)$ and $A(3)$.
Let $K$ be a finitely generated extension of $\mathbb {Q}$. We consider the family of $\ell $-adic representations ($\ell $ varies through the set of all prime numbers) of the absolute Galois group of $K$, attached to $\ell $-adic cohomology of a separated scheme of finite type over $K$. We prove that the fields cut out from the algebraic closure of $K$by the kernels of the representations of the family are linearly disjoint over a finite extension of K. This gives a positive answer to a question of Serre.
Let $L(s, E)= {\mathop{\sum }\nolimits}_{n\geq 1} {a}_{n} {n}^{- s} $ be the $L$-series corresponding to an elliptic curve $E$ defined over $ \mathbb{Q} $ and $\mathbf{u} = \mathop{\{ {u}_{m} \} }\nolimits_{m\geq 0} $ be a nondegenerate binary recurrence sequence. We prove that if ${ \mathcal{M} }_{E} $ is the set of $n$ such that ${a}_{n} \not = 0$ and ${ \mathcal{N} }_{E} $ is the subset of $n\in { \mathcal{M} }_{E} $ such that $\vert {a}_{n} \vert = \vert {u}_{m} \vert $ holds with some integer $m\geq 0$, then ${ \mathcal{N} }_{E} $ is of density $0$ as a subset of ${ \mathcal{M} }_{E} $.
For an abelian variety $A$ over a number field $k$ we discuss the maximal divisible subgroup of ${\mathrm{H} }^{1} (k, A)$ and its intersection with the subgroup Ш$(A/ k)$. The results are most complete for elliptic curves over $ \mathbb{Q} $.
We consider the analogue of the André–Oort conjecture for Drinfeld modular varieties which was formulated by Breuer. We prove this analogue for special points with separable reflex field over the base field by adapting methods which were used by Klingler and Yafaev to prove the André–Oort conjecture under the generalized Riemann hypothesis in the classical case. Our result extends results of Breuer showing the correctness of the analogue for special points lying in a curve and for special points having a certain behaviour at a fixed set of primes.