To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given $f(x,y)\in \mathbb Z[x,y]$ with no common components with $x^a-y^b$ and $x^ay^b-1$, we prove that for $p$ sufficiently large, with $C(f)$ exceptions, the solutions $(x,y)\in \overline {\mathbb F}_p\times \overline {\mathbb F}_p$ of $f(x,y)=0$ satisfy $ {\rm ord}(x)+{\rm ord}(y)\gt c (\log p/\log \log p)^{1/2},$ where $c$ is a constant and ${\rm ord}(r)$ is the order of $r$ in the multiplicative group $\overline {\mathbb F}_p^*$. Moreover, for most $p\lt N$, $N$ being a large number, we prove that, with $C(f)$ exceptions, ${\rm ord}(x)+{\rm ord}(y)\gt p^{1/4+\epsilon (p)},$ where $\epsilon (p)$ is an arbitrary function tending to $0$ when $p$ goes to $\infty $.
Given a number field K, we consider families of critically separable rational maps of degree d over K possessing a certain fixed-point and multiplier structure. With suitable notions of isomorphism and good reduction between rational maps in these families, we prove a finiteness theorem which is analogous to Shafarevich’s theorem for elliptic curves. We also define the minimal critical discriminant, a global object which can be viewed as a measure of arithmetic complexity of a rational map. We formulate a conjectural bound on the minimal critical discriminant, which is analogous to Szpiro’s conjecture for elliptic curves, and we prove that a special case of our conjecture implies Szpiro’s conjecture in the semistable case.
In [Gorodnik and Nevo, Counting lattice points, J. Reine Angew. Math. 663 (2012), 127–176] an effective solution of the lattice point counting problem in general domains in semisimple S-algebraic groups and affine symmetric varieties was established. The method relies on the mean ergodic theorem for the action of G on G/Γ, and implies uniformity in counting over families of lattice subgroups admitting a uniform spectral gap. In the present paper we extend some methods developed in [Nevo and Sarnak, Prime and almost prime integral points on principal homogeneous spaces, Acta Math. 205 (2010), 361–402] and use them to establish several useful consequences of this property, including:
(1) effective upper bounds on lifting for solutions of congruences in affine homogeneous varieties;
(2) effective upper bounds on the number of integral points on general subvarieties of semisimple group varieties;
(3) effective lower bounds on the number of almost prime points on symmetric varieties;
(4) effective upper bounds on almost prime solutions of congruences in homogeneous varieties.
Given an elliptic curve E over a field of positive characteristic p, we consider how to efficiently determine whether E is ordinary or supersingular. We analyze the complexity of several existing algorithms and then present a new approach that exploits structural differences between ordinary and supersingular isogeny graphs. This yields a simple algorithm that, given E and a suitable non-residue in 𝔽p2, determines the supersingularity of E in O(n3log 2n) time and O(n) space, where n=O(log p) . Both these complexity bounds are significant improvements over existing methods, as we demonstrate with some practical computations.
We prove that under any projective embedding of an abelian variety A of dimension g, a complete set of addition laws has cardinality at least g+1, generalizing a result of Bosma and Lenstra for the Weierstrass model of an elliptic curve in ℙ2. In contrast, we prove, moreover, that if k is any field with infinite absolute Galois group, then there exists for every abelian variety A/k a projective embedding and an addition law defined for every pair of k-rational points. For an abelian variety of dimension 1 or 2, we show that this embedding can be the classical Weierstrass model or the embedding in ℙ15, respectively, up to a finite number of counterexamples for ∣k∣≤5 .
Given a prime q and a negative discriminant D, the CM method constructs an elliptic curve E/Fq by obtaining a root of the Hilbert class polynomial HD(X) modulo q. We consider an approach based on a decomposition of the ring class field defined by HD, which we adapt to a CRT setting. This yields two algorithms, each of which obtains a root of HD mod q without necessarily computing any of its coefficients. Heuristically, our approach uses asymptotically less time and space than the standard CM method for almost all D. Under the GRH, and reasonable assumptions about the size of log q relative to ∣D∣, we achieve a space complexity of O((m+n)log q)bits, where mn=h(D) , which may be as small as O(∣D∣1/4 log q) . The practical efficiency of the algorithms is demonstrated using ∣D∣>1016 and q≈2256, and also ∣D∣>1015 and q≈233220. These examples are both an order of magnitude larger than the best previous results obtained with the CM method.
For an abelian surface A over a number field k, we study the limiting distribution of the normalized Euler factors of the L-function of A. This distribution is expected to correspond to taking characteristic polynomials of a uniform random matrix in some closed subgroup of USp(4); this Sato–Tate group may be obtained from the Galois action on any Tate module of A. We show that the Sato–Tate group is limited to a particular list of 55 groups up to conjugacy. We then classify A according to the Galois module structure on the ℝ-algebra generated by endomorphisms of (the Galois type), and establish a matching with the classification of Sato–Tate groups; this shows that there are at most 52 groups up to conjugacy which occur as Sato–Tate groups for suitable A and k, of which 34 can occur for k=ℚ. Finally, we present examples of Jacobians of hyperelliptic curves exhibiting each Galois type (over ℚ whenever possible), and observe numerical agreement with the expected Sato–Tate distribution by comparing moment statistics.
We prove that the Brauer–Manin obstruction is the only obstruction to the existence of integral points on affine varieties over global fields of positive characteristic $p$. More precisely, we show that the only obstructions come from étale covers of exponent $p$ or, alternatively, from flat covers coming from torsors under connected group schemes of exponent $p$.
Let f be a modular form of weight k≥2 and level N, let K be a quadratic imaginary field and assume that there is a prime p exactly dividing N. Under certain arithmetic conditions on the level N and the field K, one can attach to this data a p-adic L-function Lp (f,K,s) , as done by Bertolini–Darmon–Iovita–Spieß in [Teitelbaum’s exceptional zero conjecture in the anticyclotomic setting, Amer. J. Math. 124 (2002), 411–449]. In the case of p being inert in K, this analytic function of a p-adic variable s vanishes in the critical range s=1,…,k−1 , and one may be interested in the values of its derivative in this range. We construct, for k≥4 , a Chow motive endowed with a distinguished collection of algebraic cycles which encode these values, via the p-adic Abel–Jacobi map. Our main result generalizes the result obtained by Iovita and Spieß in [Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), 333–384], which gives a similar formula for the central value s=k/2 . Even in this case our construction is different from the one found by Iovita and Spieß.
We study the equation a2−2b6=cp and its specialization a2−2=cp, where p is a prime, using the modular method. In particular, we use a ℚ-curve defined over for which the solution (a,b,c)=(±1,±1,−1) gives rise to a CM-form. This allows us to apply the modular method to resolve the equation a2−2b6=cp for p in certain congruence classes. For the specialization a2−2=cp, we use the multi-Frey technique of Siksek to obtain further refined results.
We study the distribution of the size of Selmer groups and Tate–Shafarevich groups arising from a 2-isogeny and its dual 2-isogeny for elliptic curves En:y2=x3−n3. We show that the 2-ranks of these groups all follow the same distribution. The result also implies that the mean value of the 2-rank of the corresponding Tate–Shafarevich groups for square-free positive integers n≤X is as X→∞. This is quite different from quadratic twists of elliptic curves with full 2-torsion points over ℚ [M. Xiong and A. Zaharescu, Distribution of Selmer groups of quadratic twists of a family of elliptic curves. Adv. Math.219 (2008), 523–553], where one Tate–Shafarevich group is almost always trivial while the other is much larger.
Let be a commutative algebraic group defined over a number field K. For a prime ℘ in K where has good reduction, let N℘,n be the number of n-torsion points of the reduction of modulo ℘ where n is a positive integer. When is of dimension one and n is relatively prime to a fixed finite set of primes depending on , we determine the average values of N℘,n as the prime ℘ varies. This average value as a function of n always agrees with a divisor function.
Let R be a complete rank-1 valuation ring of mixed characteristic (0, p), and let K be its field of fractions. A g-dimensional truncated Barsotti–Tate group G of level n over R is said to have a level-n canonical subgroup if there is a K-subgroup of G ⊗RK with geometric structure (Z/pnZ)g consisting of points ‘closest to zero’. We give a non-trivial condition on the Hasse invariant of G that guarantees the existence of the canonical subgroup, analogous to a result of Katz and Lubin for elliptic curves. The bound is independent of the height and dimension of G.
We prove that the Newton polygons of Frobenius on the crystalline cohomology of proper smooth varieties satisfy a symmetry that results, in the case of projective smooth varieties, from Poincaré duality and the hard Lefschetz theorem. As a corollary, we deduce that the Betti numbers in odd degrees of any proper smooth variety over a field are even (a consequence of Hodge symmetry in characteristic zero), answering an old question of Serre. Then we give a generalization and a refinement for arbitrary varieties over finite fields, in response to later questions of Serre and of Katz.
We describe an algorithm to prove the Birch and Swinnerton-Dyer conjectural formula for any given elliptic curve defined over the rational numbers of analytic rank zero or one. With computer assistance we rigorously prove the formula for 16714 of the 16725 such curves of conductor less than 5000.
Let G be a subgroup of the symmetric group Sn, and let δG=∣Sn/G∣−1 where ∣Sn/G∣ is the index of G in Sn. Then there are at most On,ϵ(Hn−1+δG+ϵ) monic integer polynomials of degree n that have Galois group G and height not exceeding H, so there are only a “few” polynomials having a “small” Galois group.
In this work, we study the intersection cohomology of Siegel modular varieties. The goal is to express the trace of a Hecke operator composed with a power of the Frobenius endomorphism (at a good place) on this cohomology in terms of the geometric side of Arthur’s invariant trace formula for well-chosen test functions. Our main tools are the results of Kottwitz about the contribution of the cohomology with compact support and about the stabilization of the trace formula, Arthur’s L2 trace formula and the fixed point formula of Morel [Complexes pondérés sur les compactifications de Baily–Borel. Le cas des variétés de Siegel, J. Amer. Math. Soc. 21 (2008), 23–61]. We ‘stabilize’ this last formula, i.e. express it as a sum of stable distributions on the general symplectic groups and its endoscopic groups, and obtain the formula conjectured by Kottwitz in [Shimura varieties and λ-adic representations, in Automorphic forms, Shimura varieties and L-functions, Part I, Perspectives in Mathematics, vol. 10 (Academic Press, San Diego, CA, 1990), 161–209]. Applications of the results of this article have already been given by Kottwitz, assuming Arthur’s conjectures. Here, we give weaker unconditional applications in the cases of the groups GSp4 and GSp6.
According to the André–Oort conjecture, an algebraic curve in Y (1)n that is not equal to a special subvariety contains only finitely many points which correspond to ann-tuple of elliptic curves with complex multiplication. Pink’s conjecture generalizes the André–Oort conjecture to the extent that if the curve is not contained in a special subvariety of positive codimension, then it is expected to meet the union of all special subvarieties of codimension two in only finitely many points. We prove this for a large class of curves in Y (1)n. When restricting to special subvarieties of codimension two that are not strongly special we obtain finiteness for all curves defined over . Finally, we formulate and prove a variant of the Mordell–Lang conjecture for subvarieties of Y (1)n.
We construct six infinite series of families of pairs of curves (X,Y ) of arbitrarily high genus, defined over number fields, together with an explicit isogeny from the Jacobian of X to the Jacobian of Y splitting multiplication by 2, 3 or 4. For each family, we compute the isomorphism type of the isogeny kernel and the dimension of the image of the family in the appropriate moduli space. The families are derived from Cassou-Noguès and Couveignes’ explicit classification of pairs (f,g) of polynomials such that f(x1)−g(x2) is reducible.
We present p-adic algorithms for computing Hecke polynomials and Hecke eigenforms associated to spaces of classical modular forms, using the theory of overconvergent modular forms. The algorithms have a running time which grows linearly with the logarithm of the weight and are well suited to investigating the dimension variation of certain p-adically defined spaces of classical modular forms.