We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extending the idea of Dabrowski [‘On the proportion of rank 0 twists of elliptic curves’, C. R. Acad. Sci. Paris, Ser. I346 (2008), 483–486] and using the 2-descent method, we provide three general families of elliptic curves over $\mathbb{Q}$ such that a positive proportion of prime-twists of such elliptic curves have rank zero simultaneously.
For the $(d+1)$-dimensional Lie group $G=\mathbb{Z}_{p}^{\times }\ltimes \mathbb{Z}_{p}^{\oplus d}$, we determine through the use of $p$-power congruences a necessary and sufficient set of conditions whereby a collection of abelian $L$-functions arises from an element in $K_{1}(\mathbb{Z}_{p}\unicode[STIX]{x27E6}G\unicode[STIX]{x27E7})$. If $E$ is a semistable elliptic curve over $\mathbb{Q}$, these abelian $L$-functions already exist; therefore, one can obtain many new families of higher order $p$-adic congruences. The first layer congruences are then verified computationally in a variety of cases.
We give the complete list of possible torsion subgroups of elliptic curves with complex multiplication over number fields of degree 1–13. Additionally we describe the algorithm used to compute these torsion subgroups and its implementation.
We consider two families of arithmetic divisors defined on integral models of Shimura curves. The first was studied by Kudla, Rapoport and Yang, who proved that if one assembles these divisors in a formal generating series, one obtains the $q$-expansion of a modular form of weight 3/2. The present work concerns the Shimura lift of this modular form: we identify the Shimura lift with a generating series comprising divisors arising in the recent work of Kudla and Rapoport regarding cycles on Shimura varieties of unitary type. In the prequel to this paper, the author considered the geometry of the two families of cycles. These results are combined with the Archimedean calculations found in this work in order to establish the theorem. In particular, we obtain new examples of modular generating series whose coefficients lie in arithmetic Chow groups of Shimura varieties.
We use an invariant-theoretic method to compute certain twists of the modular curves $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}X(n)$ for $n=7,11$. Searching for rational points on these twists enables us to find non-trivial pairs of $n$-congruent elliptic curves over ${\mathbb{Q}}$, that is, pairs of non-isogenous elliptic curves over ${\mathbb{Q}}$ whose $n$-torsion subgroups are isomorphic as Galois modules. We also find a non-trivial pair of 11-congruent elliptic curves over ${\mathbb{Q}}(T)$, and hence give an explicit infinite family of non-trivial pairs of 11-congruent elliptic curves over ${\mathbb{Q}}$.
We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite-index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups.
We explicitly construct the Kummer variety associated to the Jacobian of a hyperelliptic curve of genus 3 that is defined over a field of characteristic not equal to 2 and has a rational Weierstrass point defined over the same field. We also construct homogeneous quartic polynomials on the Kummer variety and show that they represent the duplication map using results of Stoll.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathcal{O}$ be a maximal order in the quaternion algebra $B_p$ over $\mathbb{Q}$ ramified at $p$ and $\infty $. The paper is about the computational problem: construct a supersingular elliptic curve $E$ over $\mathbb{F}_p$ such that ${\rm End}(E) \cong \mathcal{O}$. We present an algorithm that solves this problem by taking gcds of the reductions modulo $p$ of Hilbert class polynomials.
New theoretical results are required to determine the complexity of our algorithm. Our main result is that, under certain conditions on a rank three sublattice $\mathcal{O}^T$ of $\mathcal{O}$, the order $\mathcal{O}$ is effectively characterized by the three successive minima and two other short vectors of $\mathcal{O}^T\! .$ The desired conditions turn out to hold whenever the $j$-invariant $j(E)$, of the elliptic curve with ${\rm End}(E) \cong \mathcal{O}$, lies in $\mathbb{F}_p$. We can then prove that our algorithm terminates with running time $O(p^{1+\varepsilon })$ under the aforementioned conditions.
As a further application we present an algorithm to simultaneously match all maximal order types with their associated $j$-invariants. Our algorithm has running time $O(p^{2.5 + \varepsilon })$ operations and is more efficient than Cerviño’s algorithm for the same problem.
This paper presents an algorithm to construct cryptographically strong genus $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$ curves and their Kummer surfaces via Rosenhain invariants and related Kummer parameters. The most common version of the complex multiplication (CM) algorithm for constructing cryptographic curves in genus 2 relies on the well-studied Igusa invariants and Mestre’s algorithm for reconstructing the curve. On the other hand, the Rosenhain invariants typically have much smaller height, so computing them requires less precision, and in addition, the Rosenhain model for the curve can be written down directly given the Rosenhain invariants. Similarly, the parameters for a Kummer surface can be expressed directly in terms of rational functions of theta constants. CM-values of these functions are algebraic numbers, and when computed to high enough precision, LLL can recognize their minimal polynomials. Motivated by fast cryptography on Kummer surfaces, we investigate a variant of the CM method for computing cryptographically strong Rosenhain models of curves (as well as their associated Kummer surfaces) and use it to generate several example curves at different security levels that are suitable for use in cryptography.
There is an algorithm of Schoof for finding divisors of class numbers of real cyclotomic fields of prime conductor. In this paper we introduce an improvement of the elliptic analogue of this algorithm by using a subgroup of elliptic units given by Weierstrass forms. These elliptic units which can be expressed in terms of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}x$-coordinates of points on elliptic curves enable us to use the fast arithmetic of elliptic curves over finite fields.
In this paper we give a new formula for adding $2$-coverings and $3$-coverings of elliptic curves that avoids the need for any field extensions. We show that the $6$-coverings obtained can be represented by pairs of cubic forms. We then prove a theorem on the existence of such models with integer coefficients and the same discriminant as a minimal model for the Jacobian elliptic curve. This work has applications to finding rational points of large height on elliptic curves.
We present an efficient algorithm to compute the Hasse–Witt matrix of a hyperelliptic curve $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}C/\mathbb{Q}$ modulo all primes of good reduction up to a given bound $N$, based on the average polynomial-time algorithm recently proposed by the first author. An implementation for hyperelliptic curves of genus 2 and 3 is more than an order of magnitude faster than alternative methods for $N = 2^{26}$.
In this paper we consider ordinary elliptic curves over global function fields of characteristic $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$. We present a method for performing a descent by using powers of the Frobenius and the Verschiebung. An examination of the local images of the descent maps together with a duality theorem yields information about the global Selmer groups. Explicit models for the homogeneous spaces representing the elements of the Selmer groups are given and used to construct independent points on the elliptic curve. As an application we use descent maps to prove an upper bound for the naive height of an $S$-integral point on $A$. To illustrate our methods, a detailed example is presented.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}f\in S_2(\Gamma _0(N))$ be a normalized newform such that the abelian variety $A_f$ attached by Shimura to $f$ is the Jacobian of a genus-two curve. We give an efficient algorithm for computing Galois representations associated to such newforms.
This paper introduces ‘hyper-and-elliptic-curve cryptography’, in which a single high-security group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar multiplication (for example, Diffie–Hellman shared-secret computation) and at the same time supports fast elliptic-curve formulas for fixed-base-point scalar multiplication (for example, key generation) and multi-scalar multiplication (for example, signature verification).
We construct explicit $K3$ surfaces over $\mathbb{Q}$ having real multiplication. Our examples are of geometric Picard rank 16. The standard method for the computation of the Picard rank provably fails for the surfaces constructed.
We study the distribution of 2-Selmer ranks in the family of quadratic twists of an elliptic curve $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}E$ over an arbitrary number field $K$. Under the assumption that ${\rm Gal}(K(E[2])/K) \ {\cong }\ S_3$, we show that the density (counted in a nonstandard way) of twists with Selmer rank $r$ exists for all positive integers $r$, and is given via an equilibrium distribution, depending only on a single parameter (the ‘disparity’), of a certain Markov process that is itself independent of $E$ and $K$. More generally, our results also apply to $p$-Selmer ranks of twists of two-dimensional self-dual ${\bf F}_p$-representations of the absolute Galois group of $K$ by characters of order $p$.
Weinvestigate the Hasse principle for complete intersections cut out by a quadric hypersurface and a cubic hypersurface defined over the rational numbers.
The $p$-cohomology of an algebraic variety in characteristic $p$ lies naturally in the category $D_{c}^{b}(R)$ of coherent complexes of graded modules over the Raynaud ring (Ekedahl, Illusie, Raynaud). We study homological algebra in this category. When the base field is finite, our results provide relations between the absolute cohomology groups of algebraic varieties, log varieties, algebraic stacks, etc., and the special values of their zeta functions. These results provide compelling evidence that $D_{c}^{b}(R)$ is the correct target for $p$-cohomology in characteristic $p$.