We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that, by taking normalizations over certain auxiliary good reduction integral models, one obtains integral models of toroidal and minimal compactifications of PEL-type Shimura varieties which enjoy many features of the good reduction theory studied as in the earlier works of Faltings and Chai’s and the author’s. We treat all PEL-type cases uniformly, with no assumption on the level, ramifications, and residue characteristics involved.
For any number field we calculate the exact proportion of rational numbers which are everywhere locally a norm but not globally a norm from the number field.
The Bogomolov conjecture claims that a closed subvariety containing a dense subset of small points is a special kind of subvariety. In the arithmetic setting over number fields, the Bogomolov conjecture for abelian varieties has already been established as a theorem of Ullmo and Zhang, but in the geometric setting over function fields, it has not yet been solved completely. There are only some partial results known such as the totally degenerate case due to Gubler and our recent work generalizing Gubler’s result. The key in establishing the previous results on the Bogomolov conjecture is the equidistribution method due to Szpiro, Ullmo and Zhang with respect to the canonical measures. In this paper we exhibit the limits of this method, making an important contribution to the geometric version of the conjecture. In fact, by the crucial investigation of the support of the canonical measure on a subvariety, we show that the conjecture in full generality holds if the conjecture holds for abelian varieties which have anywhere good reduction. As a consequence, we establish a partial answer that generalizes our previous result.
We construct regular integral canonical models for Shimura varieties attached to Spin and orthogonal groups at (possibly ramified) primes $p>2$ where the level is not divisible by $p$. We exhibit these models as schemes of ‘relative PEL type’ over integral canonical models of larger Spin Shimura varieties with good reduction at $p$. Work of Vasiu–Zink then shows that the classical Kuga–Satake construction extends over the integral models and that the integral models we construct are canonical in a very precise sense. Our results have applications to the Tate conjecture for K3 surfaces, as well as to Kudla’s program of relating intersection numbers of special cycles on orthogonal Shimura varieties to Fourier coefficients of modular forms.
In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field.
We generalize Siegel’s theorem on integral points on affine curves to integral points of bounded degree, giving a complete characterization of affine curves with infinitely many integral points of degree $d$ or less over some number field. Generalizing Picard’s theorem, we prove an analogous result characterizing complex affine curves admitting a nonconstant holomorphic map from a degree $d$ (or less) analytic cover of $\mathbb{C}$.
A conjecture of Scharaschkin and Skorobogatov states that there is a Brauer–Manin obstruction to the existence of rational points on a smooth geometrically irreducible curve over a number field. In this paper, we verify the Scharaschkin–Skorobogatov conjecture for explicit families of generalized Mordell curves. Our approach uses standard techniques from the Brauer–Manin obstruction and the arithmetic of certain threefolds.
Let $E$ be an elliptic curve over $\mathbb{Q}$, and let ${\it\varrho}_{\flat }$ and ${\it\varrho}_{\sharp }$ be odd two-dimensional Artin representations for
which ${\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp }$ is self-dual. The progress on modularity achieved
in recent decades ensures the existence of normalized eigenforms $f$, $g$, and $h$ of respective weights two, one, and one, giving
rise to $E$, ${\it\varrho}_{\flat }$, and ${\it\varrho}_{\sharp }$ via the constructions of Eichler and Shimura, and
of Deligne and Serre. This article examines certain $p$-adic iterated integrals attached
to the triple $(f,g,h)$, which are $p$-adic avatars of the leading term of the
Hasse–Weil–Artin $L$-series $L(E,{\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp },s)$ when it has a double zero at the centre. A
formula is proposed for these iterated integrals, involving the formal group
logarithms of global points on $E$—referred to as Stark
points—which are defined over the number field cut out by ${\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp }$. This formula can be viewed as an elliptic curve
analogue of Stark’s conjecture on units attached to weight-one forms. It is
proved when $g$ and $h$ are binary theta series attached to a common
imaginary quadratic field in which $p$ splits, by relating the arithmetic quantities
that arise in it to elliptic units and Heegner points. Fast algorithms for computing $p$-adic iterated integrals based on Katz expansions
of overconvergent modular forms are then exploited to gather numerical evidence in
more exotic scenarios, encompassing Mordell–Weil groups over cyclotomic
fields, ring class fields of real quadratic fields (a setting which may shed light on
the theory of Stark–Heegner points attached to Shintani-type cycles on ${\mathcal{H}}_{p}\times {\mathcal{H}}$), and extensions of $\mathbb{Q}$ with Galois group a central extension of the
dihedral group $D_{2n}$ or of one of the exceptional subgroups $A_{4}$, $S_{4}$, and $A_{5}$ of $\mathbf{PGL}_{2}(\mathbb{C})$.
We show that there are no non-trivial stratified bundles over a smooth simply connected quasi-projective variety over an algebraic closure of a finite field if the variety admits a normal projective compactification with boundary locus of codimension greater than or equal to $2$.
We describe a model-theoretic setting for the study of Shimura varieties, and study the interaction between model theory and arithmetic geometry in this setting. In particular, we show that the model-theoretic statement of a certain ${\mathcal{L}}_{\unicode[STIX]{x1D714}_{1},\unicode[STIX]{x1D714}}$-sentence having a unique model of cardinality $\aleph _{1}$ is equivalent to a condition regarding certain Galois representations associated with Hodge-generic points. We then show that for modular and Shimura curves this ${\mathcal{L}}_{\unicode[STIX]{x1D714}_{1},\unicode[STIX]{x1D714}}$-sentence has a unique model in every infinite cardinality. In the process, we prove a new characterisation of the special points on any Shimura variety.
In this paper we establish a Chowla–Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function ${\rm\Gamma}$ and an analogous function ${\rm\Gamma}_{2}$ at rational numbers. We combine this identity with work of Colmez to relate the CM values of the Hilbert modular function to Faltings heights of CM abelian varieties. We also give explicit formulas for products of exponentials of Faltings heights, allowing us to study some of their arithmetic properties using the Lang–Rohrlich conjecture.
We solve the Diophantine equation $Y^{2}=X^{3}+k$ for all nonzero integers $k$ with $|k|\leqslant 10^{7}$. Our approach uses a classical connection between these equations and cubic Thue equations. The latter can be treated algorithmically via lower bounds for linear forms in logarithms in conjunction with lattice-basis reduction.
Consider an elliptic curve defined over an imaginary quadratic field K with good reduction at the primes above p ≥ 5 and with complex multiplication by the full ring of integers of K. In this paper, we construct p-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then prove p-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.
It is well known that every elliptic curve over the rationals admits a parametrization by means of modular functions. In this short note, we show that only finitely many elliptic curves over $\mathbf{Q}$ can be parametrized by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures. Further, we give the list of all elliptic curves $E$ of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of $E$. Finally, we raise several open questions.
We prove an analog of the Yomdin–Gromov lemma for $p$-adic definable sets and more broadly in a non-Archimedean definable context. This analog keeps track of piecewise approximation by Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result to bound the number of rational points of bounded height on the transcendental part of $p$-adic subanalytic sets, and to bound the dimension of the set of complex polynomials of bounded degree lying on an algebraic variety defined over $\mathbb{C}(\!(t)\!)$, in analogy to results by Pila and Wilkie, and by Bombieri and Pila, respectively. Along the way we prove, for definable functions in a general context of non-Archimedean geometry, that local Lipschitz continuity implies piecewise global Lipschitz continuity.
We prove that formal Fourier Jacobi expansions of degree two are Siegel modular forms. As a corollary, we deduce modularity of the generating function of special cycles of codimension two, which were defined by Kudla. A second application is the proof of termination of an algorithm to compute Fourier expansions of arbitrary Siegel modular forms of degree two. Combining both results enables us to determine relations of special cycles in the second Chow group.
Van Wamelen [Math. Comp. 68 (1999) no. 225, 307–320] lists 19 curves of genus two over $\mathbf{Q}$ with complex multiplication (CM). However, for each curve, the CM-field turns out to be cyclic Galois over $\mathbf{Q}$, and the generic case of a non-Galois quartic CM-field did not feature in this list. The reason is that the field of definition in that case always contains the real quadratic subfield of the reflex field.
We extend Van Wamelen’s list to include curves of genus two defined over this real quadratic field. Our list therefore contains the smallest ‘generic’ examples of CM curves of genus two.
We explain our methods for obtaining this list, including a new height-reduction algorithm for arbitrary hyperelliptic curves over totally real number fields. Unlike Van Wamelen, we also give a proof of our list, which is made possible by our implementation of denominator bounds of Lauter and Viray for Igusa class polynomials.
We study elliptic curves over quadratic fields with isogenies of certain degrees. Let $n$ be a positive integer such that the modular curve $X_{0}(n)$ is hyperelliptic of genus ${\geqslant}2$ and such that its Jacobian has rank $0$ over $\mathbb{Q}$. We determine all points of $X_{0}(n)$ defined over quadratic fields, and we give a moduli interpretation of these points. We show that, with a finite number of exceptions up to $\overline{\mathbb{Q}}$-isomorphism, every elliptic curve over a quadratic field $K$ admitting an $n$-isogeny is $d$-isogenous, for some $d\mid n$, to the twist of its Galois conjugate by a quadratic extension $L$ of $K$. We determine $d$ and $L$ explicitly, and we list all exceptions. As a consequence, again with a finite number of exceptions up to $\overline{\mathbb{Q}}$-isomorphism, all elliptic curves with $n$-isogenies over quadratic fields are in fact $\mathbb{Q}$-curves.
We give upper and lower bounds for the number of rational points on Prym varieties over finite fields. Moreover, we determine the exact maximum and minimum number of rational points on Prym varieties of dimension 2.
Suppose E is an elliptic curve over $\Bbb Q$, and p>3 is a split multiplicative prime for E. Let q ≠ p be an auxiliary prime, and fix an integer m coprime to pq. We prove the generalised Mazur–Tate–Teitelbaum conjecture for E at the prime p, over number fields $K\subset \Bbb Q\big(\mu_{{q^{\infty}}},\;\!^{q^{\infty}\!\!\!\!}\sqrt{m}\big)$ such that p remains inert in $K\cap\Bbb Q(\mu_{{q^{\infty}}})^+$. The proof makes use of an improved p-adic L-function, which can be associated to the Rankin convolution of two Hilbert modular forms of unequal parallel weight.