To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the real counting function N(q) (q∈[1,∞)) for the hypothetical ‘curve’ over 𝔽1, whose corresponding zeta function is the complete Riemann zeta function. We show that such a counting function exists as a distribution, is positive on (1,∞) and takes the value −∞ at q=1 as expected from the infinite genus of C. Then, we develop a theory of functorial 𝔽1-schemes which reconciles the previous attempts by Soulé and Deitmar. Our construction fits with the geometry of monoids of Kato, is no longer limited to toric varieties and it covers the case of schemes associated with Chevalley groups. Finally we show, using the monoid of adèle classes over an arbitrary global field, how to apply our functorial theory of -schemes to interpret conceptually the spectral realization of zeros of L-functions.
We prove a mean-value result for derivatives of L-functions at the center of the critical strip for a family of forms obtained by twisting a fixed form by quadratic characters with modulus which can be represented as sum of two squares. Such a family of forms is related to elliptic fibrations given by the equation q(t)y2=f(x) where q(t)=t2+1 and f(x) is a cubic polynomial. The aim of the paper is to establish a prototype result for such quadratic families. Though our method can be generalized to prove similar results for any positive definite quadratic form in place of sum of two squares, we refrain from doing so to keep the presentation as clear as possible.
We prove the semisimplicity conjecture for A-motives over finitely generated fields K. This conjecture states that the rational Tate modules V𝔭(M) of a semisimple A-motive M are semisimple as representations of the absolute Galois group of K. This theorem is in analogy with known results for abelian varieties and Drinfeld modules, and has been sketched previously by Tamagawa. We deduce two consequences of the theorem for the algebraic monodromy groups G𝔭(M) associated to an A-motive M by Tannakian duality. The first requires no semisimplicity condition on M and states that G𝔭(M) may be identified naturally with the Zariski closure of the image of the absolute Galois group of K in the automorphism group of V𝔭(M). The second states that the connected component of G𝔭(M) is reductive if M is semisimple and has a separable endomorphism algebra.
We generalise results of Buzzard, Taylor and Kassaei on analytic continuation of p-adic overconvergent eigenforms over ℚ to the case of p-adic overconvergent Hilbert eigenforms over totally real fields F, under the assumption that p splits completely in F. This includes weight-one forms and has applications to generalisations of Buzzard and Taylor’s main theorem. Next, we follow an idea of Kassaei’s to generalise Coleman’s well-known result that ‘an overconvergent Up-eigenform of small slope is classical’ to the case of p-adic overconvergent Hilbert eigenforms of Iwahori level.
In Boyer [Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties, Invent. Math. 177 (2009), 239–280 (in French)], a sheaf version of the monodromy-weight conjecture for some unitary Shimura varieties was proved by giving explicitly the monodromy filtration of the complex of vanishing cycles in terms of local systems introduced in Harris and Taylor [The geometry and cohomology of some simple Shimura varieties (Princeton University Press, Princeton, NJ, 2001)]. The main result of this paper is the cohomological version of the monodromy-weight conjecture for these Shimura varieties, which we prove by means of an explicit description of the groups of cohomology in terms of automorphic representations and the local Langlands correspondence.
Let E be an ordinary elliptic curve over a finite field q of q elements. We improve a bound on bilinear additive character sums over points on E, and obtain its analogue for bilinear multiplicative character sums. We apply these bounds to some variants of the sum-product problem on E.
If C is a curve of genus 2 defined over a field k and J is its Jacobian, then we can associate a hypersurface K in ℙ3 to J, called the Kummer surface of J. Flynn has made this construction explicit in the case when the characteristic of k is not 2 and C is given by a simplified equation. He has also given explicit versions of several maps defined on the Kummer surface and shown how to perform arithmetic on J using these maps. In this paper we generalize these results to the case of arbitrary characteristic.
We study the fluctuations in the distribution of zeros of zeta functions of a family of hyperelliptic curves defined over a fixed finite field, in the limit of large genus. According to the Riemann hypothesis for curves, the zeros all lie on a circle. Their angles are uniformly distributed, so for a curve of genus g a fixed interval ℐ will contain asymptotically 2g∣ℐ∣ angles as the genus grows. We show that for the variance of number of angles in ℐ is asymptotically (2/π2)log (2g∣ℐ∣) and prove a central limit theorem: the normalized fluctuations are Gaussian. These results continue to hold for shrinking intervals as long as the expected number of angles 2g∣ℐ∣ tends to infinity.
Using the polynomial method of Dvir [On the size of Kakeya sets in finite fields. Preprint], we establish optimal estimates for Kakeya sets and Kakeya maximal functions associated to algebraic varieties W over finite fields F. For instance, given an (n−1)-dimensional projective variety W⊂¶n(F), we establish the Kakeya maximal estimate for all functions f:Fn→R and d≥1, where for each w∈W, the supremum is over all irreducible algebraic curves in Fn of degree at most d that pass through w but do not lie in W, and with Cn,W,d depending only on n,d and the degree of W; the special case when W is the hyperplane at infinity in particular establishes the Kakeya maximal function conjecture in finite fields, which in turn strengthens the results of Dvir.
We show an arithmetic generalization of the recent work of Lazarsfeld–Mustaţǎ which uses Okounkov bodies to study linear series of line bundles. As applications, we derive a log-concavity inequality on volumes of arithmetic line bundles and an arithmetic Fujita approximation theorem for big line bundles.
We prove the parity conjecture for the ranks of p-power Selmer groups (p⁄=2) of a large class of elliptic curves defined over totally real number fields.
We study the asymptotical behaviour of the moduli space of morphisms of given anticanonical degree from a rational curve to a split toric variety, when the degree goes to infinity. We obtain in this case a geometric analogue of Manin’s conjecture about rational points of bounded height on varieties defined over a global field. The study is led through a generating series whose coefficients lie in a Grothendieck ring of motives, the motivic height zeta function. In order to establish convergence properties of this function, we use a notion of motivic Euler product. It relies on a construction of Denef and Loeser which associates a virtual motive to a first order logic ring formula.
Let ρ be a two-dimensional modulo p representation of the absolute Galois group of a totally real number field. Under the assumptions that ρ has a large image and admits a low-weight crystalline modular deformation we show that any low-weight crystalline deformation of ρ unramified outside a finite set of primes will be modular. We follow the approach of Wiles as generalized by Fujiwara. The main new ingredient is an Ihara-type lemma for the local component at ρ of the middle degree cohomology of a Hilbert modular variety. As an application we relate the algebraic p-part of the value at one of the adjoint L-function associated with a Hilbert modular newform to the cardinality of the corresponding Selmer group.
For the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.
We investigate the special fibres of Siegel modular varieties with Iwahori level structure. On these spaces, we have the Newton stratification, and the Kottwitz–Rapoport (KR) stratification; one would like to understand how these stratifications are related to each other. We give a simple description of all KR strata which are entirely contained in the supersingular locus as disjoint unions of Deligne–Lusztig varieties. We also give an explicit numerical description of the KR stratification in terms of abelian varieties.
On Shimura varieties of orthogonal type over totally real fields, we prove a product formula and the modularity of Kudla’s generating series of special cycles in Chow groups.
Let K be a local field of equal characteristic p>2, let XK/K be a smooth proper relative curve, and let ℱ be a rank 1 smooth l-adic sheaf (l≠p) on a dense open subset UK⊂XK. In this paper, under some assumptions on the wild ramification of ℱ, we prove a conductor formula that computes the Swan conductor of the etale cohomology of the vanishing cycles of ℱ. Our conductor formula is a generalization of the conductor formula of Bloch, but for non-constant coefficients.
In the predecessor to this article, we used global equidistribution theorems to prove that given a correspondence between a modular curve and an elliptic curve A, the intersection of any finite-rank subgroup of A with the set of CM-points of A is finite. In this article we apply local methods, involving the theory of arithmetic differential equations, to prove quantitative versions of a similar statement. The new methods apply also to certain infinite-rank subgroups, as well as to the situation where the set of CM-points is replaced by certain isogeny classes of points on the modular curve. Finally, we prove Shimura-curve analogues of these results.
We continue our study of the reduction of PEL Shimura varieties with parahoric level structure at primes p at which the group defining the Shimura variety ramifies. We describe ‘good’ p-adic integral models of these Shimura varieties and study their étale local structure. In the present paper we mainly concentrate on the case of unitary groups for a ramified quadratic extension. Some of our results are applications of the theory of twisted affine flag varieties that we developed in a previous paper.