We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The generalized Soulé character was introduced by H. Nakamura and Z. Wojtkowiak and is a generalization of Soulé’s cyclotomic character. In this paper, we prove that certain linear sums of generalized Soulé characters essentially coincide with the image of generalized Beilinson elements in K-groups under Soulé’s higher regulator maps. This result generalizes Huber–Wildeshaus’ theorem, which is a cyclotomic field case of our results, to an arbitrary number fields.
A well-known conjecture, often attributed to Serre, asserts that any motive over any number field has infinitely many ordinary reductions (in the sense that the Newton polygon coincides with the Hodge polygon). In the case of Hilbert modular cuspforms $f$ of parallel weight $(2,\ldots ,2)$, we show how to produce more ordinary primes by using the Sato–Tate equidistribution and combining it with the Galois theory of the Hecke field. Under the assumption of stronger forms of Sato–Tate equidistribution, we get stronger (but conditional) results. In the case of higher weights, we formulate the ordinariness conjecture for submotives of the intersection cohomology of proper algebraic varieties with motivic coefficients, and verify it for the motives whose $\ell$-adic Galois realisations are abelian on a finite-index subgroup. We get some results for Hilbert cuspforms of weight $(3,\ldots ,3)$, weaker than those for $(2,\ldots ,2)$.
We prove an analogue of Belyi’s theorem in characteristic two. Our proof consists of the following three steps. We first introduce a new notion called pseudo-tameness for morphisms between curves over an algebraically closed field of characteristic two. Secondly, we prove the existence of a ‘pseudo-tame’ rational function by showing the vanishing of an obstruction class. Finally, we construct a tamely ramified rational function from the ‘pseudo-tame’ rational function.
We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.
We study the generalized Fermat equation $x^{2}+y^{3}=z^{p}$, to be solved in coprime integers, where $p\geqslant 7$ is prime. Modularity and level-lowering techniques reduce the problem to the determination of the sets of rational points satisfying certain 2-adic and 3-adic conditions on a finite set of twists of the modular curve $X(p)$. We develop new local criteria to decide if two elliptic curves with certain types of potentially good reduction at 2 and 3 can have symplectically or anti-symplectically isomorphic $p$-torsion modules. Using these criteria we produce the minimal list of twists of $X(p)$ that have to be considered, based on local information at 2 and 3; this list depends on $p\hspace{0.2em}{\rm mod}\hspace{0.2em}24$. We solve the equation completely when $p=11$, which previously was the smallest unresolved $p$. One new ingredient is the use of the ‘Selmer group Chabauty’ method introduced by the third author, applied in an elliptic curve Chabauty context, to determine relevant points on $X_{0}(11)$ defined over certain number fields of degree 12. This result is conditional on the generalized Riemann hypothesis, which is needed to show correctness of the computation of the class groups of five specific number fields of degree 36. We also give some partial results for the case $p=13$. The source code for the various computations is supplied as supplementary material with the online version of this article.
Fix an odd prime p. Let $\mathcal{D}_n$ denote a non-abelian extension of a number field K such that $K\cap\mathbb{Q}(\mu_{p^{\infty}})=\mathbb{Q}, $ and whose Galois group has the form $ \text{Gal}\big(\mathcal{D}_n/K\big)\cong \big(\mathbb{Z}/p^{n'}\mathbb{Z}\big)^{\oplus g}\rtimes \big(\mathbb{Z}/p^n\mathbb{Z}\big)^{\times}\ $ where g > 0 and $0 \lt n'\leq n$. Given a modular Galois representation $\overline{\rho}:G_{\mathbb{Q}}\rightarrow \text{GL}_2(\mathbb{F})$ which is p-ordinary and also p-distinguished, we shall write $\mathcal{H}(\overline{\rho})$ for the associated Hida family. Using Greenberg’s notion of Selmer atoms, we prove an exact formula for the algebraic λ-invariant
\begin{equation}
\lambda^{\text{alg}}_{\mathcal{D}_n}(f) \;=\; \text{the number of zeroes of }
\text{char}_{\Lambda}\big(\text{Sel}_{\mathcal{D}_n^{\text{cy}}}\big(f\big)^{\wedge}\big)
\end{equation}
at all $f\in\mathcal{H}(\overline{\rho})$, under the assumption $\mu^{\text{alg}}_{K(\mu_p)}(f_0)=0$ for at least one form f0. We can then easily deduce that $\lambda^{\text{alg}}_{\mathcal{D}_n}(f)$ is constant along branches of $\mathcal{H}(\overline{\rho})$, generalising a theorem of Emerton, Pollack and Weston for $\lambda^{\text{alg}}_{\mathbb{Q}(\mu_{p})}(f)$.
For example, if $\mathcal{D}_{\infty}=\bigcup_{n\geq 1}\mathcal{D}_n$ has the structure of a p-adic Lie extension then our formulae include the cases where: either (i) $\mathcal{D}_{\infty}/K$ is a g-fold false Tate tower, or (ii) $\text{Gal}\big(\mathcal{D}_{\infty}/K(\mu_p)\big)$ has dimension ≤ 3 and is a pro-p-group.
Let $A$ be the product of an abelian variety and a torus defined over a number field $K$. Fix some prime number $\ell$. If $\unicode[STIX]{x1D6FC}\in A(K)$ is a point of infinite order, we consider the set of primes $\mathfrak{p}$ of $K$ such that the reduction $(\unicode[STIX]{x1D6FC}\hspace{0.2em}{\rm mod}\hspace{0.2em}\mathfrak{p})$ is well-defined and has order coprime to $\ell$. This set admits a natural density. By refining the method of Jones and Rouse [Galois theory of iterated endomorphisms, Proc. Lond. Math. Soc. (3)100(3) (2010), 763–794. Appendix A by Jeffrey D. Achter], we can express the density as an $\ell$-adic integral without requiring any assumption. We also prove that the density is always a rational number whose denominator (up to powers of $\ell$) is uniformly bounded in a very strong sense. For elliptic curves, we describe a strategy for computing the density which covers every possible case.
Let $S$ be a Shimura variety with reflex field $E$. We prove that the action of $\text{Gal}(\overline{\mathbb{Q}}/E)$ on $S$ maps special points to special points and special subvarieties to special subvarieties. Furthermore, the Galois conjugates of a special point all have the same complexity (as defined in the theory of unlikely intersections). These results follow from Milne and Shih’s construction of canonical models of Shimura varieties, based on a conjecture of Langlands which was proved by Borovoi and Milne.
We provide evidence for this conclusion: given a finite Galois cover $f:X\rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ of group $G$, almost all (in a density sense) realizations of $G$ over $\mathbb{Q}$ do not occur as specializations of $f$. We show that this holds if the number of branch points of $f$ is sufficiently large, under the abc-conjecture and, possibly, the lower bound predicted by the Malle conjecture for the number of Galois extensions of $\mathbb{Q}$ of given group and bounded discriminant. This widely extends a result of Granville on the lack of $\mathbb{Q}$-rational points on quadratic twists of hyperelliptic curves over $\mathbb{Q}$ with large genus, under the abc-conjecture (a diophantine reformulation of the case $G=\mathbb{Z}/2\mathbb{Z}$ of our result). As a further evidence, we exhibit a few finite groups $G$ for which the above conclusion holds unconditionally for almost all covers of $\mathbb{P}_{\mathbb{Q}}^{1}$ of group $G$. We also introduce a local–global principle for specializations of Galois covers $f:X\rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ and show that it often fails if $f$ has abelian Galois group and sufficiently many branch points, under the abc-conjecture. On the one hand, such a local–global conclusion underscores the ‘smallness’ of the specialization set of a Galois cover of $\mathbb{P}_{\mathbb{Q}}^{1}$. On the other hand, it allows to generate conditionally ‘many’ curves over $\mathbb{Q}$ failing the Hasse principle, thus generalizing a recent result of Clark and Watson devoted to the hyperelliptic case.
We show that compatible systems of $\ell$-adic sheaves on a scheme of finite type over the ring of integers of a local field are compatible along the boundary up to stratification. This extends a theorem of Deligne on curves over a finite field. As an application, we deduce the equicharacteristic case of classical conjectures on $\ell$-independence for proper smooth varieties over complete discrete valuation fields. Moreover, we show that compatible systems have compatible ramification. We also prove an analogue for integrality along the boundary.
A classical construction of Katz gives a purely algebraic construction of Eisenstein–Kronecker series using the Gauß–Manin connection on the universal elliptic curve. This approach gives a systematic way to study algebraic and $p$-adic properties of real-analytic Eisenstein series. In the first part of this paper we provide an alternative algebraic construction of Eisenstein–Kronecker series via the Poincaré bundle. Building on this, we give in the second part a new conceptional construction of Katz’ two-variable $p$-adic Eisenstein measure through $p$-adic theta functions of the Poincaré bundle.
In this paper we prove the Rigidity Theorem for motives of rigid analytic varieties over a non-Archimedean valued field $K$. We prove this theorem both for motives with transfers and without transfers in a relative setting. Applications include the construction of étale realization functors, an upgrade of the known comparison between motives with and without transfers and an upgrade of the rigid analytic motivic tilting equivalence, extending them to $\mathbb{Z}[1/p]$-coefficients.
In this article we prove the explicit Mordell Conjecture for large families of curves. In addition, we introduce a method, of easy application, to compute all rational points on curves of quite general shape and increasing genus. The method bases on some explicit and sharp estimates for the height of such rational points, and the bounds are small enough to successfully implement a computer search. As an evidence of the simplicity of its application, we present a variety of explicit examples and explain how to produce many others. In the appendix our method is compared in detail to the classical method of Manin–Demjanenko and the analysis of our explicit examples is carried to conclusion.
Let ${\mathcal{X}}$ be a regular variety, flat and proper over a complete regular curve over a finite field such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of ${\mathcal{X}}$ is finite if and only Tate’s conjecture for divisors on $X$ holds and the Tate–Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension. We also give a formula relating the orders of the group under the assumption that they are finite, generalizing the known formula for a surface.
Let $F$ be a totally real field and let $p$ be an odd prime which is totally split in $F$. We define and study one-dimensional ‘partial’ eigenvarieties interpolating Hilbert modular forms over $F$ with weight varying only at a single place $v$ above $p$. For these eigenvarieties, we show that methods developed by Liu, Wan and Xiao apply and deduce that, over a boundary annulus in weight space of sufficiently small radius, the partial eigenvarieties decompose as a disjoint union of components which are finite over weight space. We apply this result to prove the parity version of the Bloch–Kato conjecture for finite slope Hilbert modular forms with trivial central character (with a technical assumption if $[F:\mathbb{Q}]$ is odd), by reducing to the case of parallel weight $2$. As another consequence of our results on partial eigenvarieties, we show, still under the assumption that $p$ is totally split in $F$, that the ‘full’ (dimension $1+[F:\mathbb{Q}]$) cuspidal Hilbert modular eigenvariety has the property that many (all, if $[F:\mathbb{Q}]$ is even) irreducible components contain a classical point with noncritical slopes and parallel weight $2$ (with some character at $p$ whose conductor can be explicitly bounded), or any other algebraic weight.
A result of Bleher, Chinburg, Greenberg, Kakde, Pappas, Sharifi and Taylor has initiated the topic of higher codimension Iwasawa theory. As a generalization of the classical Iwasawa main conjecture, they prove a relationship between analytic objects (a pair of Katz’s $2$-variable $p$-adic $L$-functions) and algebraic objects (two ‘everywhere unramified’ Iwasawa modules) involving codimension two cycles in a $2$-variable Iwasawa algebra. We prove a result by considering the restriction to an imaginary quadratic field $K$ (where an odd prime $p$ splits) of an elliptic curve $E$, defined over $\mathbb{Q}$, with good supersingular reduction at $p$. On the analytic side, we consider eight pairs of $2$-variable $p$-adic $L$-functions in this setup (four of the $2$-variable $p$-adic $L$-functions have been constructed by Loeffler and a fifth $2$-variable $p$-adic $L$-function is due to Hida). On the algebraic side, we consider modifications of fine Selmer groups over the $\mathbb{Z}_{p}^{2}$-extension of $K$. We also provide numerical evidence, using algorithms of Pollack, towards a pseudonullity conjecture of Coates–Sujatha.
Let $p$ be an odd prime number and $E$ an elliptic curve defined over a number field $F$ with good reduction at every prime of $F$ above $p$. We compute the Euler characteristics of the signed Selmer groups of $E$ over the cyclotomic $\mathbb{Z}_{p}$-extension. The novelty of our result is that we allow the elliptic curve to have mixed reduction types for primes above $p$ and mixed signs in the definition of the signed Selmer groups.
In this article we construct a p-adic three-dimensional eigenvariety for the group $U$(2,1)($E$), where $E$ is a quadratic imaginary field and $p$ is inert in $E$. The eigenvariety parametrizes Hecke eigensystems on the space of overconvergent, locally analytic, cuspidal Picard modular forms of finite slope. The method generalized the one developed in Andreatta, Iovita and Stevens [$p$-adic families of Siegel modular cuspforms Ann. of Math. (2) 181, (2015), 623–697] by interpolating the coherent automorphic sheaves when the ordinary locus is empty. As an application of this construction, we reprove a particular case of the Bloch–Kato conjecture for some Galois characters of $E$, extending the results of Bellaiche and Chenevier to the case of a positive sign.
Let $K$ be an algebraically closed field of prime characteristic $p$, let $X$ be a semiabelian variety defined over a finite subfield of $K$, let $\unicode[STIX]{x1D6F7}:X\longrightarrow X$ be a regular self-map defined over $K$, let $V\subset X$ be a subvariety defined over $K$, and let $\unicode[STIX]{x1D6FC}\in X(K)$. The dynamical Mordell–Lang conjecture in characteristic $p$ predicts that the set $S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$ is a union of finitely many arithmetic progressions, along with finitely many $p$-sets, which are sets of the form $\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$ for some $m\in \mathbb{N}$, some rational numbers $c_{i}$ and some non-negative integers $k_{i}$. We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $X$ is an algebraic torus, we can prove the conjecture in two cases: either when $\dim (V)\leqslant 2$, or when no iterate of $\unicode[STIX]{x1D6F7}$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $X$. We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction.
The congruent number elliptic curves are defined by $E_{d}:y^{2}=x^{3}-d^{2}x$, where $d\in \mathbb{N}$. We give a simple proof of a formula for $L(\operatorname{Sym}^{2}(E_{d}),3)$ in terms of the determinant of the elliptic trilogarithm evaluated at some degree zero divisors supported on the torsion points on $E_{d}(\overline{\mathbb{Q}})$.