We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
Let f and g be two cuspidal modular forms and let
${\mathcal {F}}$
be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space
$\mathcal {W}$
. Using ideas of Pottharst, under certain hypotheses on f and
$g,$
we construct a coherent sheaf over
$V \times \mathcal {W}$
that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function
$L_p$
interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of
$L_p$
.
We formulate a general question regarding the size of the iterated Galois groups associated with an algebraic dynamical system and then we discuss some special cases of our question. Our main result answers this question for certain split polynomial maps whose coordinates are unicritical polynomials.
We prove a 1966 conjecture of Tate concerning the Artin–Tate pairing on the Brauer group of a surface over a finite field, which is the analog of the Cassels–Tate pairing. Tate asked if this pairing is always alternating and we find an affirmative answer, which is somewhat surprising in view of the work of Poonen–Stoll on the Cassels–Tate pairing. Our method is based on studying a connection between the Artin–Tate pairing and (generalizations of) Steenrod operations in étale cohomology. Inspired by an analogy to the algebraic topology of manifolds, we develop tools allowing us to calculate the relevant étale Steenrod operations in terms of characteristic classes.
We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure attached to Weil-restricted groups, as defined by B. Levin. Our result covers the (modified) local models attached to all connected reductive groups over $p$-adic local fields with $p\geqslant 5$. In addition, we give a self-contained study of relative affine Grassmannians and loop groups formed using general relative effective Cartier divisors in a relative curve over an arbitrary Noetherian affine scheme.
The bounded height conjecture of Bombieri, Masser, and Zannier states that for any sufficiently generic algebraic subvariety of a semiabelian $\overline{\mathbb{Q}}$-variety $G$ there is an upper bound on the Weil height of the points contained in its intersection with the union of all algebraic subgroups having (at most) complementary dimension in $G$. This conjecture has been shown by Habegger in the case where $G$ is either a multiplicative torus or an abelian variety. However, there are new obstructions to his approach if $G$ is a general semiabelian variety. In particular, the lack of Poincaré reducibility means that quotients of a given semiabelian variety are intricate to describe. To overcome this, we study directly certain families of line bundles on $G$. This allows us to demonstrate the conjecture for general semiabelian varieties.
Using the axioms of He and Rapoport for the stratifications of Shimura varieties, we explain a result of Görtz, He, and Nie that the EKOR strata contained in the basic loci can be described as a disjoint union of Deligne–Lusztig varieties. In the special case of Siegel modular varieties, we compare their descriptions to that of Görtz and Yu for the supersingular Kottwitz-Rapoport strata and to the descriptions of Harashita and Hoeve for the supersingular Ekedahl–Oort strata.
We study the growth of p-primary Selmer groups of abelian varieties with good ordinary reduction at p in
${{Z}}_p$
-extensions of a fixed number field K. Proving that in many situations the knowledge of the Selmer groups in a sufficiently large number of finite layers of a
${{Z}}_p$
-extension over K suffices for bounding the over-all growth, we relate the Iwasawa invariants of Selmer groups in different
${{Z}}_p$
-extensions of K. As applications, we bound the growth of Mordell–Weil ranks and the growth of Tate-Shafarevich groups. Finally, we derive an analogous result on the growth of fine Selmer groups.
We correct the proof of the main $\ell$-independence result of the above-mentioned paper by showing that for any smooth and proper variety over an equicharacteristic local field, there exists a globally defined such variety with the same ($p$-adic and $\ell$-adic) cohomology.
We show that the compactly supported cohomology of certain $\text{U}(n,n)$- or $\text{Sp}(2n)$-Shimura varieties with $\unicode[STIX]{x1D6E4}_{1}(p^{\infty })$-level vanishes above the middle degree. The only assumption is that we work over a CM field $F$ in which the prime $p$ splits completely. We also give an application to Galois representations for torsion in the cohomology of the locally symmetric spaces for $\text{GL}_{n}/F$. More precisely, we use the vanishing result for Shimura varieties to eliminate the nilpotent ideal in the construction of these Galois representations. This strengthens recent results of Scholze [On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), 945–1066; MR 3418533] and Newton–Thorne [Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma 4 (2016), e21; MR 3528275].
We sharpen earlier work of Dabrowski on near-perfect power values of the quartic form $x^{4}-y^{4}$, through appeal to Frey curves of various signatures and related techniques.
The sequence of prime numbers p for which a variety over ℚ has no p-adic point plays a fundamental role in arithmetic geometry. This sequence is deterministic, however, we prove that if we choose a typical variety from a family then the sequence has random behaviour. We furthermore prove that this behaviour is modelled by a random walk in Brownian motion. This has several consequences, one of them being the description of the finer properties of the distribution of the primes in this sequence via the Feynman–Kac formula.
Recently E. Bombieri and N. M. Katz (2010) demonstrated that several well-known results about the distribution of values of linear recurrence sequences lead to interesting statements for Frobenius traces of algebraic curves. Here we continue this line of study and establish the Möbius randomness law quantitatively for the normalised form of Frobenius traces.
This paper completes the construction of $p$-adic $L$-functions for unitary groups. More precisely, in Harris, Li and Skinner [‘$p$-adic $L$-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure’, Doc. Math.Extra Vol. (2006), 393–464 (electronic)], three of the authors proposed an approach to constructing such $p$-adic $L$-functions (Part I). Building on more recent results, including the first named author’s construction of Eisenstein measures and $p$-adic differential operators [Eischen, ‘A $p$-adic Eisenstein measure for unitary groups’, J. Reine Angew. Math.699 (2015), 111–142; ‘$p$-adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble)62(1) (2012), 177–243], Part II of the present paper provides the calculations of local $\unicode[STIX]{x1D701}$-integrals occurring in the Euler product (including at $p$). Part III of the present paper develops the formalism needed to pair Eisenstein measures with Hida families in the setting of the doubling method.
Given an elliptic curve E in Legendre form $y^2 = x(x - 1)(x - \lambda )$ over the fraction field of a Henselian ring R of mixed characteristic $(0, 2)$, we present an algorithm for determining a semistable model of E over R that depends only on the valuation of $\lambda $. We provide several examples along with an easy corollary concerning $2$-torsion.
We study special cycles on a Shimura variety of orthogonal type over a totally real field of degree d associated with a quadratic form in $n+2$ variables whose signature is $(n,2)$ at e real places and $(n+2,0)$ at the remaining $d-e$ real places for $1\leq e <d$. Recently, these cycles were constructed by Kudla and Rosu–Yott, and they proved that the generating series of special cycles in the cohomology group is a Hilbert-Siegel modular form of half integral weight. We prove that, assuming the Beilinson–Bloch conjecture on the injectivity of the higher Abel–Jacobi map, the generating series of special cycles of codimension er in the Chow group is a Hilbert–Siegel modular form of genus r and weight $1+n/2$. Our result is a generalization of Kudla’s modularity conjecture, solved by Yuan–Zhang–Zhang unconditionally when $e=1$.
Let $k$ be a finite field and $L$ be the function field of a curve $C/k$ of genus $g\geq 1$. In the first part of this note we show that the number of separable $S$-integral points on a constant elliptic curve $E/L$ is bounded solely in terms of $g$ and the size of $S$. In the second part we assume that $L$ is the function field of a hyperelliptic curve $C_{A}:s^{2}=A(t)$, where $A(t)$ is a square-free $k$-polynomial of odd degree. If $\infty$ is the place of $L$ associated to the point at infinity of $C_{A}$, then we prove that the set of separable $\{\infty \}$-points can be bounded solely in terms of $g$ and does not depend on the Mordell–Weil group $E(L)$. This is done by bounding the number of separable integral points over $k(t)$ on elliptic curves of the form $E_{A}:A(t)y^{2}=f(x)$, where $f(x)$ is a polynomial over $k$. Additionally, we show that, under an extra condition on $A(t)$, the existence of a separable integral point of ‘small’ height on the elliptic curve $E_{A}/k(t)$ determines the isomorphism class of the elliptic curve $y^{2}=f(x)$.
We prove a comparison isomorphism between certain moduli spaces of $p$-divisible groups and strict ${\mathcal{O}}_{K}$-modules (RZ-spaces). Both moduli problems are of PEL-type (polarization, endomorphism, level structure) and the difficulty lies in relating polarized $p$-divisible groups and polarized strict ${\mathcal{O}}_{K}$-modules. We use the theory of relative displays and frames, as developed by Ahsendorf, Lau and Zink, to translate this into a problem in linear algebra. As an application of these results, we verify new cases of the arithmetic fundamental lemma (AFL) of Wei Zhang: The comparison isomorphism yields an explicit description of certain cycles that play a role in the AFL. This allows, under certain conditions, to reduce the AFL identity in question to an AFL identity in lower dimension.
We introduce a generalization
${\rm{\pounds}}_d^{(\alpha)}(X)$
of the finite polylogarithms
${\rm{\pounds}}_d^{(0)}(X) = {{\rm{\pounds}}_d}(X) = \sum\nolimits_{k = 1}^{p - 1} {X^k}/{k^d}$
, in characteristic p, which depends on a parameter α. The special case
${\rm{\pounds}}_1^{(\alpha)}(X)$
was previously investigated by the authors as the inverse, in an appropriate sense, of a parametrized generalization of the truncated exponential which is instrumental in a grading switching technique for nonassociative algebras. Here, we extend such generalization to
${\rm{\pounds}}_d^{(\alpha)}(X)$
in a natural manner and study some properties satisfied by those polynomials. In particular, we find how the polynomials
${\rm{\pounds}}_d^{(\alpha)}(X)$
are related to the powers of
${\rm{\pounds}}_1^{(\alpha)}(X)$
and derive some consequences.
Fix $d\geqslant 2$ and a field $k$ such that $\operatorname{char}k\nmid d$. Assume that $k$ contains the $d$th roots of $1$. Then the irreducible components of the curves over $k$ parameterizing preperiodic points of polynomials of the form $z^{d}+c$ are geometrically irreducible and have gonality tending to $\infty$. This implies the function field analogue of the strong uniform boundedness conjecture for preperiodic points of $z^{d}+c$. It also has consequences over number fields: it implies strong uniform boundedness for preperiodic points of bounded eventual period, which in turn reduces the full conjecture for preperiodic points to the conjecture for periodic points. Our proofs involve a novel argument specific to finite fields, in addition to more standard tools such as the Castelnuovo–Severi inequality.