We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $A$ be a non-isotrivial ordinary abelian surface over a global function field of characteristic $p>0$ with good reduction everywhere. Suppose that $A$ does not have real multiplication by any real quadratic field with discriminant a multiple of $p$. We prove that there are infinitely many places modulo which $A$ is isogenous to the product of two elliptic curves.
Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. Let $\mathcal {E}$ be a semi-simple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal {E}_i$ of $\mathcal {E}$ have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal {E}$ at $x$ is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$. Then there exists a dense open subset $U\subset X$ such that $\mathcal {E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar {\mathbb {Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar {\mathbb {Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exist a dense open subset $U\subset X$ and an abelian scheme $\pi _U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^{1}(\pi _U)_*\bar {\mathbb {Q}}_l$.
Let
$g \geq 1$
be an integer and let
$A/\mathbb Q$
be an abelian variety that is isogenous over
$\mathbb Q$
to a product of g elliptic curves defined over
$\mathbb Q$
, pairwise non-isogenous over
$\overline {\mathbb Q}$
and each without complex multiplication. For an integer t and a positive real number x, denote by
$\pi _A(x, t)$
the number of primes
$p \leq x$
, of good reduction for A, for which the Frobenius trace
$a_{1, p}(A)$
associated to the reduction of A modulo p equals t. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that
$\pi _A(x, 0) \ll _A x^{1 - \frac {1}{3 g+1 }}/(\operatorname {log} x)^{1 - \frac {2}{3 g+1}}$
and
$\pi _A(x, t) \ll _A x^{1 - \frac {1}{3 g + 2}}/(\operatorname {log} x)^{1 - \frac {2}{3 g + 2}}$
if
$t \neq 0$
. These bounds largely improve upon recent ones obtained for
$g = 2$
by Chen, Jones, and Serban, and may be viewed as generalizations to arbitrary g of the bounds obtained for
$g=1$
by Murty, Murty, and Saradha, combined with a refinement in the power of
$\operatorname {log} x$
by Zywina. Under the assumptions stated above, we also prove the existence of a density one set of primes p satisfying
$|a_{1, p}(A)|>p^{\frac {1}{3 g + 1} - \varepsilon }$
for any fixed
$\varepsilon>0$
.
We prove that
$164\, 634\, 913$
is the smallest positive integer that is a sum of two rational sixth powers, but not a sum of two integer sixth powers. If
$C_{k}$
is the curve
$x^{6} + y^{6} = k$
, we use the existence of morphisms from
$C_{k}$
to elliptic curves, together with the Mordell–Weil sieve, to rule out the existence of rational points on
$C_{k}$
for various k.
Let${\mathbb M}$ be an affine variety equipped with a foliation, both defined over a number field ${\mathbb K}$. For an algebraic $V\subset {\mathbb M}$ over ${\mathbb K}$, write $\delta _{V}$ for the maximum of the degree and log-height of V. Write $\Sigma _{V}$ for the points where the leaves intersect V improperly. Fix a compact subset ${\mathcal B}$ of a leaf ${\mathcal L}$. We prove effective bounds on the geometry of the intersection ${\mathcal B}\cap V$. In particular, when $\operatorname {codim} V=\dim {\mathcal L}$ we prove that $\#({\mathcal B}\cap V)$ is bounded by a polynomial in $\delta _{V}$ and $\log \operatorname {dist}^{-1}({\mathcal B},\Sigma _{V})$. Using these bounds we prove a result on the interpolation of algebraic points in images of ${\mathcal B}\cap V$ by an algebraic map $\Phi $. For instance, under suitable conditions we show that $\Phi ({\mathcal B}\cap V)$ contains at most $\operatorname {poly}(g,h)$ algebraic points of log-height h and degree g.
We deduce several results in Diophantine geometry. Following Masser and Zannier, we prove that given a pair of sections $P,Q$ of a nonisotrivial family of squares of elliptic curves that do not satisfy a constant relation, whenever $P,Q$ are simultaneously torsion their order of torsion is bounded effectively by a polynomial in $\delta _{P},\delta _{Q}$; in particular, the set of such simultaneous torsion points is effectively computable in polynomial time. Following Pila, we prove that given $V\subset {\mathbb C}^{n}$, there is an (ineffective) upper bound, polynomial in $\delta _{V}$, for the degrees and discriminants of maximal special subvarieties; in particular, it follows that the André–Oort conjecture for powers of the modular curve is decidable in polynomial time (by an algorithm depending on a universal, ineffective Siegel constant). Following Schmidt, we show that our counting result implies a Galois-orbit lower bound for torsion points on elliptic curves of the type previously obtained using transcendence methods by David.
In this article, we improve our main results from [LL21] in two directions: First, we allow ramified places in the CM extension $E/F$ at which we consider representations that are spherical with respect to a certain special maximal compact subgroup, by formulating and proving an analogue of the Kudla–Rapoport conjecture for exotic smooth Rapoport–Zink spaces. Second, we lift the restriction on the components at split places of the automorphic representation, by proving a more general vanishing result on certain cohomology of integral models of unitary Shimura varieties with Drinfeld level structures.
In this paper, we prove the assertion that the number of monic cubic polynomials $F(x) = x^3 + a_2 x^2 + a_1 x + a_0$ with integer coefficients and irreducible, Galois over ${\mathbb {Q}}$ satisfying $\max \{|a_2|, |a_1|, |a_0|\} \leq X$ is bounded from above by $O(X (\log X)^2)$. We also count the number of abelian monic binary cubic forms with integer coefficients up to a natural equivalence relation ordered by the so-called Bhargava–Shankar height. Finally, we prove an assertion characterizing the splitting field of 2-torsion points of semi-stable abelian elliptic curves.
We show that the conjecture of [27] for the special value at $s=1$ of the zeta function of an arithmetic surface is equivalent to the Birch–Swinnerton–Dyer conjecture for the Jacobian of the generic fibre.
In this article we study integral models of Shimura varieties, called Pappas–Rapoport splitting model, for ramified P.E.L. Shimira data. We study the special fiber and some stratification of these models, in particular we show that these are smooth and the Rapoport locus and the $\mu $-ordinary locus are dense, under some condition on the ramification.
In this article, we show that the Abel–Jacobi images of the Heegner cycles over the Shimura curves constructed by Nekovar, Besser and the theta elements contructed by Chida–Hsieh form a bipartite Euler system in the sense of Howard. As an application of this, we deduce a converse to Gross–Zagier–Kolyvagin type theorem for higher weight modular forms generalising works of Wei Zhang and Skinner for modular forms of weight 2. That is, we show that if the rank of certain residual Selmer group is 1, then the Abel–Jacobi image of the Heegner cycle is nonzero in this residual Selmer group.
Let
$E/\mathbf {Q}$
be an elliptic curve and
$p>3$
be a good ordinary prime for E and assume that
$L(E,1)=0$
with root number
$+1$
(so
$\text {ord}_{s=1}L(E,s)\geqslant 2$
). A construction of Darmon–Rotger attaches to E and an auxiliary weight 1 cuspidal eigenform g such that
$L(E,\text {ad}^{0}(g),1)\neq 0$
, a Selmer class
$\kappa _{p}\in \text {Sel}(\mathbf {Q},V_{p}E)$
, and they conjectured the equivalence
In this article, we prove the first cases on Darmon–Rotger’s conjecture when the auxiliary eigenform g has complex multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2.
The formula of the title relates p-adic heights of Heegner points and derivatives of p-adic L-functions. It was originally proved by Perrin-Riou for p-ordinary elliptic curves over the rationals, under the assumption that p splits in the relevant quadratic extension. We remove this assumption, in the more general setting of Hilbert-modular abelian varieties.
Let $C$ be a smooth curve over a finite field of characteristic $p$ and let $M$ be an overconvergent $\mathbf {F}$-isocrystal over $C$. After replacing $C$ with a dense open subset, $M$ obtains a slope filtration. This is a purely $p$-adic phenomenon; there is no counterpart in the theory of lisse $\ell$-adic sheaves. The graded pieces of this slope filtration correspond to lisse $p$-adic sheaves, which we call geometric. Geometric lisse $p$-adic sheaves are mysterious, as there is no $\ell$-adic analogue. In this article, we study the monodromy of geometric lisse $p$-adic sheaves with rank one. More precisely, we prove exponential bounds on their ramification breaks. When the generic slopes of $M$ are integers, we show that the local ramification breaks satisfy a certain type of periodicity. The crux of the proof is the theory of $\mathbf {F}$-isocrystals with log-decay. We prove a monodromy theorem for these $\mathbf {F}$-isocrystals, as well as a theorem relating the slopes of $M$ to the rate of log-decay of the slope filtration. As a consequence of these methods, we provide a new proof of the Drinfeld–Kedlaya theorem for irreducible $\mathbf {F}$-isocrystals on curves.
Consider three normalized cuspidal eigenforms of weight
$2$
and prime level p. Under the assumption that the global root number of the associated triple product L-function is
$+1$
, we prove that the complex Abel–Jacobi image of the modified diagonal cycle of Gross–Kudla–Schoen on the triple product of the modular curve
$X_0(p)$
is torsion in the corresponding Hecke isotypic component of the Griffiths intermediate Jacobian. The same result holds with the complex Abel–Jacobi map replaced by its étale counterpart. As an application, we deduce torsion properties of Chow–Heegner points associated with modified diagonal cycles on elliptic curves of prime conductor with split multiplicative reduction. The approach also works in the case of composite square-free level.
Let E be an elliptic curve defined over a number field F with good ordinary reduction at all primes above p, and let
$F_\infty $
be a finitely ramified uniform pro-p extension of F containing the cyclotomic
$\mathbb {Z}_p$
-extension
$F_{\operatorname {cyc}}$
. Set
$F^{(n)}$
be the nth layer of the tower, and
$F^{(n)}_{\operatorname {cyc}}$
the cyclotomic
$\mathbb {Z}_p$
-extension of
$F^{(n)}$
. We study the growth of the rank of
$E(F^{(n)})$
by analyzing the growth of the
$\lambda $
-invariant of the Selmer group over
$F^{(n)}_{ \operatorname {cyc}}$
as
$n\rightarrow \infty $
. This method has its origins in work of A. Cuoco, who studied
$\mathbb {Z}_p^2$
-extensions. Refined estimates for growth are proved that are close to conjectured estimates. The results are illustrated in special cases.
In this work we generalise the main result of [1] to the family of hyperelliptic curves with potentially good reduction over a p-adic field which have genus
$g=({p-1})/{2}$
and the largest possible image of inertia under the
$\ell$
-adic Galois representation associated to its Jacobian. We will prove that this Galois representation factors as the tensor product of an unramified character and an irreducible representation of a finite group, which can be either equal to the inertia image (in which case the representation is easily determined) or a
$C_2$
-extension of it. In this second case, there are two suitable representations and we will describe the Galois action explicitly in order to determine the correct one.
For an (irreducible) recurrence equation with coefficients from
$\mathbb Z[n]$
and its two linearly independent rational solutions
$u_n,v_n$
, the limit of
$u_n/v_n$
as
$n\to \infty $
, when it exists, is called the Apéry limit. We give a construction that realises certain quotients of L-values of elliptic curves as Apéry limits.
We prove a formula, which, given a principally polarized abelian variety $(A,\lambda )$ over the field of algebraic numbers, relates the stable Faltings height of $A$ with the Néron–Tate height of a symmetric theta divisor on $A$. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener. The local non-archimedean terms in our formula can be expressed as the tropical moments of the tropicalizations of $(A,\lambda )$.
We prove that if G is a finite flat group scheme of p-power rank over a perfect field of characteristic p, then the second crystalline cohomology of its classifying stack $H^2_{\text {crys}}(BG)$ recovers the Dieudonné module of G. We also provide a calculation of the crystalline cohomology of the classifying stack of an abelian variety. We use this to prove that the crystalline cohomology of the classifying stack of a p-divisible group is a symmetric algebra (in degree $2$) on its Dieudonné module. We also prove mixed-characteristic analogues of some of these results using prismatic cohomology.