We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A celebrated result by Davis, Putnam, Robinson, and Matiyasevich shows that a set of integers is listable if and only if it is positive existentially definable in the language of arithmetic. We investigate analogues of this result over structures endowed with a listable presentation. When such an analogue holds, the structure is said to have the DPRM property. We prove several results addressing foundational aspects around this problem, such as uniqueness of the listable presentation, transference of the DPRM property under interpretation, and its relation with positive existential bi-interpretability. A first application of our results is the rigorous proof of (strong versions of) several folklore facts regarding transference of the DPRM property. Another application of the theory we develop is that it will allow us to link various Diophantine conjectures to the question of whether the DPRM property holds for global fields. This last topic includes a study of the number of existential quantifiers needed to define a Diophantine set.
Consider the algebraic function $\Phi _{g,n}$ that assigns to a general $g$-dimensional abelian variety an $n$-torsion point. A question first posed by Klein asks: What is the minimal $d$ such that, after a rational change of variables, the function $\Phi _{g,n}$ can be written as an algebraic function of $d$ variables? Using techniques from the deformation theory of $p$-divisible groups and finite flat group schemes, we answer this question by computing the essential dimension and $p$-dimension of congruence covers of the moduli space of principally polarized abelian varieties. We apply this result to compute the essential $p$-dimension of congruence covers of the moduli space of genus $g$ curves, as well as its hyperelliptic locus, and of certain locally symmetric varieties. These results include cases where the locally symmetric variety $M$ is proper. As far as we know, these are the first examples of nontrivial lower bounds on the essential dimension of an unramified, nonabelian covering of a proper algebraic variety.
Let A be an abelian variety defined over a number field k, let p be an odd prime number and let
$F/k$
be a cyclic extension of p-power degree. Under not-too-stringent hypotheses we give an interpretation of the p-component of the relevant case of the equivariant Tamagawa number conjecture in terms of integral congruence relations involving the evaluation on appropriate points of A of the
${\rm Gal}(F/k)$
-valued height pairing of Mazur and Tate. We then discuss the numerical computation of this pairing, and in particular obtain the first numerical verifications of this conjecture in situations in which the p-completion of the Mordell–Weil group of A over F is not a projective Galois module.
We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.
The affine Deligne–Lusztig variety
$X_w(b)$
in the affine flag variety of a reductive group
${\mathbf G}$
depends on two parameters: the
$\sigma $
-conjugacy class
$[b]$
and the element w in the Iwahori–Weyl group
$\tilde {W}$
of
${\mathbf G}$
. In this paper, for any given
$\sigma $
-conjugacy class
$[b]$
, we determine the nonemptiness pattern and the dimension formula of
$X_w(b)$
for most
$w \in \tilde {W}$
.
for integers
$n,s,y$
and m. All solutions to this equation are known for
$m>2$
and
$s \in \{3,5,6,8,20 \}$
. We consider the case
$s=10$
, that of decagonal numbers. Using a descent argument and the modular method, we prove that the only decagonal number greater than 1 expressible as a perfect mth power with
$m>1$
is
$\mathcal {P}_{10}(3) = 3^3$
.
Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the
$\ell $
-adic cohomology of these towers.
Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie
$\ell $
-adique de ces tours.
Let
$E/\mathbb {Q}$
be an elliptic curve. For a prime p of good reduction, let
$r(E,p)$
be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group
$E(\mathbb {F}_p)$
. We prove unconditionally that
$r(E,p)> 0.72\log \log p$
for infinitely many p, and
$r(E,p)> 0.36 \log p$
under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.
In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient$\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.
Since Faltings proved Mordell’s conjecture in [16] in 1983, we have known that the sets of rational points on curves of genus at least
$2$
are finite. Determining these sets in individual cases is still an unsolved problem. Chabauty’s method (1941) [10] is to intersect, for a prime number p, in the p-adic Lie group of p-adic points of the Jacobian, the closure of the Mordell–Weil group with the p-adic points of the curve. Under the condition that the Mordell–Weil rank is less than the genus, Chabauty’s method, in combination with other methods such as the Mordell–Weil sieve, has been applied successfully to determine all rational points in many cases.
Minhyong Kim’s nonabelian Chabauty programme aims to remove the condition on the rank. The simplest case, called quadratic Chabauty, was developed by Balakrishnan, Besser, Dogra, Müller, Tuitman and Vonk, and applied in a tour de force to the so-called cursed curve (rank and genus both
$3$
).
This article aims to make the quadratic Chabauty method small and geometric again, by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the Jacobian and models over the integers).
Let $X$ be a normal and geometrically integral projective variety over a global field $K$ and let $\bar {D}$ be an adelic ${\mathbb {R}}$-Cartier divisor on $X$. We prove a conjecture of Chen, showing that the essential minimum $\zeta _{\mathrm {ess}}(\bar {D})$ of $\bar {D}$ equals its asymptotic maximal slope under mild positivity assumptions. As an application, we see that $\zeta _{\mathrm {ess}}(\bar {D})$ can be read on the Okounkov body of the underlying divisor $D$ via the Boucksom–Chen concave transform. This gives a new interpretation of Zhang's inequalities on successive minima and a criterion for equality generalizing to arbitrary projective varieties a result of Burgos Gil, Philippon and Sombra concerning toric metrized divisors on toric varieties. When applied to a projective space $X = {\mathbb {P}}_K^{d}$, our main result has several applications to the study of successive minima of hermitian vector spaces. We obtain an absolute transference theorem with a linear upper bound, answering a question raised by Gaudron. We also give new comparisons between successive slopes and absolute minima, extending results of Gaudron and Rémond.
We develop methods for constructing explicit generators, modulo torsion, of the $K_3$-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$-space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$-group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.
We prove a necessary and sufficient condition for isogenous elliptic curves based on the algebraic dependence of p-adic elliptic functions. As a consequence, we give a short proof of the p-adic analogue of Schneider’s theorem on the linear independence of p-adic elliptic logarithms of algebraic points on two nonisogenous elliptic curves defined over the field of algebraic numbers.
In this article we establish the effective Shafarevich conjecture for abelian varieties over ${\mathbb Q}$ of ${\text {GL}_2}$-type. The proof combines Faltings’ method with Serre’s modularity conjecture, isogeny estimates and results from Arakelov theory. Our result opens the way for the effective study of integral points on certain higher dimensional moduli schemes such as, for example, Hilbert modular varieties.
The plus and minus norm groups are constructed by Kobayashi as subgroups of the formal group of an elliptic curve with supersingular reduction, and they play an important role in Kobayashi’s definition of the signed Selmer groups. In this paper, we study the cohomology of these plus and minus norm groups. In particular, we show that these plus and minus norm groups are cohomologically trivial. As an application of our analysis, we establish certain (quasi-)projectivity properties of the non-primitive mixed signed Selmer groups of an elliptic curve with good reduction at all primes above p. We then build on these projectivity results to derive a Kida formula for the signed Selmer groups under a slight weakening of the usual µ = 0 assumption, and study the integrality property of the characteristic element attached to the signed Selmer groups.
We consider the reduction of an elliptic curve defined over the rational numbers modulo primes in a given arithmetic progression and investigate how often the subgroup of rational points of this reduced curve is cyclic.
In this note, we will apply the results of Gross–Zagier, Gross–Kohnen–Zagier and their generalizations to give a short proof that the differences of singular moduli are not units. As a consequence, we obtain a result on isogenies between reductions of CM elliptic curves.
We give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism to the arithmetic of
$K3$ surfaces over finite fields. We prove that every
$K3$ surface of finite height over a finite field admits a characteristic
$0$ lifting whose generic fibre is a
$K3$ surface with complex multiplication. Combined with the results of Mukai and Buskin, we prove the Tate conjecture for the square of a
$K3$ surface over a finite field. To obtain these results, we construct an analogue of Kisin’s algebraic group for a
$K3$ surface of finite height and construct characteristic
$0$ liftings of the
$K3$ surface preserving the action of tori in the algebraic group. We obtain these results for
$K3$ surfaces over finite fields of any characteristics, including those of characteristic
$2$ or
$3$.
We consider the problem of defining an action of Hecke operators on the coherent cohomology of certain integral models of Shimura varieties. We formulate a general conjecture describing which Hecke operators should act integrally and solve the conjecture in certain cases. As a consequence, we obtain p-adic estimates of Satake parameters of certain nonregular self-dual automorphic representations of
$\mathrm {GL}_n$
.
We prove the strong Suslin reciprocity law conjectured by A. Goncharov. The Suslin reciprocity law is a generalization of the Weil reciprocity law to higher Milnor $K$-theory. The Milnor $K$-groups can be identified with the top cohomology groups of the polylogarithmic motivic complexes; Goncharov's conjecture predicts the existence of a contracting homotopy underlying Suslin reciprocity. The main ingredient of the proof is a homotopy invariance theorem for the cohomology of the polylogarithmic motivic complexes in the ‘next to Milnor’ degree. We apply these results to the theory of scissors congruences of hyperbolic polytopes. For every triple of rational functions on a compact projective curve over $\mathbb {C}$ we construct a hyperbolic polytope (defined up to scissors congruence). The hyperbolic volume and the Dehn invariant of this polytope can be computed directly from the triple of rational functions on the curve.