We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Oda’s problem, which deals with the fixed field of the universal monodromy representation of moduli spaces of curves and its independence with respect to the topological data, is a central question of anabelian arithmetic geometry. This paper emphasizes the stack nature of this problem by establishing the independence of monodromy fields with respect to finer special loci data of curves with symmetries, which we show provides a new proof of Oda’s prediction.
Let A be an abelian surface over ${\mathbb {Q}}$ whose geometric endomorphism ring is a maximal order in a non-split quaternion algebra. Inspired by Mazur’s theorem for elliptic curves, we show that the torsion subgroup of $A({\mathbb {Q}})$ is $12$-torsion and has order at most $18$. Under the additional assumption that A is of $ {\mathrm{GL}}_2$-type, we give a complete classification of the possible torsion subgroups of $A({\mathbb {Q}})$.
Ishitsuka et al. [‘Explicit calculation of the mod 4 Galois representation associated with the Fermat quartic’, Int. J. Number Theory16(4) (2020), 881–905] found all points on the Fermat quartic ${F_4\colon x^4+y^4=z^4}$ over quadratic extensions of ${\mathbb {Q}}(\zeta _8)$, where $\zeta _8$ is the eighth primitive root of unity $e^{i\pi /4}$. Using Mordell’s technique, we give an alternative proof for the result of Ishitsuka et al. and extend it to the rational function field ${\mathbb {Q}}({\zeta _8})(T_1,T_2,\ldots ,T_n)$.
We study the $\overline {\mathbb {F}}_{p}$-points of the Kisin–Pappas integral models of Shimura varieties of Hodge type with parahoric level. We show that if the group is quasi-split, then every isogeny class contains the reduction of a CM point, proving a conjecture of Kisin–Madapusi–Shin. We, furthermore, show that the mod p isogeny classes are of the form predicted by the Langlands–Rapoport conjecture (cf. Conjecture 9.2 of [Rap05]) if either the Shimura variety is proper or if the group at p is unramified. The main ingredient in our work is a global argument that allows us to reduce the conjecture to the case of very special parahoric level. This case is dealt with in the Appendix by Zhou. As a corollary to our arguments, we determine the connected components of Ekedahl–Oort strata.
We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier strategy.
In this paper, we give an explicit formula as well as a practical algorithm for computing the Cassels–Tate pairing on $\text{Sel}^{2}(J) \times \text{Sel}^{2}(J)$ where J is the Jacobian variety of a genus two curve under the assumption that all points in J[2] are K-rational. We also give an explicit formula for the Obstruction map $\text{Ob}: H^1(G_K, J[2]) \rightarrow \text{Br}(K)$ under the same assumption. Finally, we include a worked example demonstrating that we can improve the rank bound given by a 2-descent via computing the Cassels–Tate pairing.
Compared with algebraic varieties the local monodromy of Drinfeld modules appears to be hopelessly complex: the image of the wild inertia subgroup under Tate module representations is infinite save for the case of potential good reduction. Nonetheless, we show that Tate modules of Drinfeld modules are ramified in a limited way: the image of a sufficiently deep ramification subgroup is trivial. This leads to a new invariant, the local conductor of a Drinfeld module. We establish an upper bound on the conductor in terms of the volume of the period lattice. As an intermediate step we develop a theory of normed lattices in function field arithmetic including the notion of volume. We relate normed lattices to vector bundles on projective curves. With the aid of Castelnuovo–Mumford regularity this implies a volume bound on norms of lattice generators, and the conductor inequality follows. Last but not least we describe the image of inertia for Drinfeld modules with period lattices of rank $1$. Just as in the theory of local $\ell$-adic Galois representations this image is commensurable with a commutative unipotent algebraic subgroup. However, in the case of Drinfeld modules such a subgroup can be a product of several copies of $\mathbf {G}_a$.
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence, we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
Cardona and Lario [‘Twists of the genus 2 curve $y^2 = x^6+1$’, J. Number Theory209 (2020), 195–211] gave a complete classification of the twists of the curve $y^2 = x^6+1$. In this paper, we study the twists of the curve whose automorphism group is defined over a biquadratic extension of the rationals. If the twists are of type B or C in the Cardona–Lario classification, we find a pair of elliptic curves whose product is isogenous with the Jacobian of the twist.
We present a new version of a generalisation to elliptic nets of a theorem of Ward [‘Memoir on elliptic divisibility sequences’, Amer. J. Math.70 (1948), 31–74] on symmetry of elliptic divisibility sequences. Our results cover all that is known today.
Inspired by K. Fujita's algebro-geometric result that complex projective space has maximal degree among all K-semistable complex Fano varieties, we conjecture that the height of a K-semistable metrized arithmetic Fano variety $\mathcal {X}$ of relative dimension $n$ is maximal when $\mathcal {X}$ is the projective space over the integers, endowed with the Fubini–Study metric. Our main result establishes the conjecture for the canonical integral model of a toric Fano variety when $n\leq 6$ (the extension to higher dimensions is conditioned on a conjectural ‘gap hypothesis’ for the degree). Translated into toric Kähler geometry, this result yields a sharp lower bound on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi functional. Furthermore, we reformulate our conjecture as an optimal lower bound on Odaka's modular height. In any dimension $n$ it is shown how to control the height of the canonical toric model $\mathcal {X},$ with respect to the Kähler–Einstein metric, by the degree of $\mathcal {X}$. In a sequel to this paper our height conjecture is established for any projective diagonal Fano hypersurface, by exploiting a more general logarithmic setup.
The deepest arithmetic invariants attached to an algebraic variety defined over a number field $F$ are conjecturally captured by the integral part of its motivic cohomology. There are essentially two ways of defining it when $X$ is a smooth projective variety: one is via the $K$-theory of a regular integral model, the other is through its $\ell$-adic realization. Both approaches are conjectured to coincide. This paper initiates the study of motivic cohomology for global fields of positive characteristic, hereafter named $A$-motivic cohomology, where classical mixed motives are replaced by mixed Anderson $A$-motives. Our main objective is to set the definitions of the integral part and the good$\ell$-adic part of the $A$-motivic cohomology using Gardeyn's notion of maximal models as the analogue of regular integral models of varieties. Our main result states that the integral part is contained in the good$\ell$-adic part. As opposed to what is expected in the number field setting, we show that the two approaches do not match in general. We conclude this work by introducing the submodule of regulated extensions of mixed Anderson $A$-motives, for which we expect the two approaches to match, and solve some particular cases of this expectation.
This paper is the first part in a series of three papers devoted to the study of enumerative invariants of abelian surfaces through the tropical approach. In this paper, we consider the enumeration of genus g curves of fixed degree passing through g points. We compute the tropical multiplicity provided by a correspondence theorem due to T. Nishinou and show that it is possible to refine this multiplicity in the style of the Block–Göttsche refined multiplicity to get tropical refined invariants.
We show that if F is $\mathbb{Q}$ or a multiquadratic number field, $p\in\left\{{2,3,5}\right\}$, and $K/F$ is a Galois extension of degree a power of p, then for elliptic curves $E/\mathbb{Q}$ ordered by height, the average dimension of the p-Selmer groups of $E/K$ is bounded. In particular, this provides a bound for the average K-rank of elliptic curves $E/\mathbb{Q}$ for such K. Additionally, we give bounds for certain representation–theoretic invariants of Mordell–Weil groups over Galois extensions of such F.
The central result is that: for each finite Galois extension $K/F$ of number fields and prime number p, as $E/\mathbb{Q}$ varies, the difference in dimension between the Galois fixed space in the p-Selmer group of $E/K$ and the p-Selmer group of $E/F$ has bounded average.
For an elliptic curve E defined over a number field K and $L/K$ a Galois extension, we study the possibilities of the Galois group Gal$(L/K)$, when the Mordell–Weil rank of $E(L)$ increases from that of $E(K)$ by a small amount (namely 1, 2, and 3). In relation with the vanishing of corresponding L-functions at $s=1$, we prove several elliptic analogues of classical theorems related to Artin’s holomorphy conjecture. We then apply these to study the analytic minimal subfield, first introduced by Akbary and Murty, for the case when order of vanishing is 2. We also investigate how the order of vanishing changes as rank increases by 1 and vice versa, generalizing a theorem of Kolyvagin.
For N integer $\ge 1$, K. Murty and D. Ramakrishnan defined the Nth Heisenberg curve, as the compactified quotient $X^{\prime }_N$ of the upper half-plane by a certain non-congruence subgroup of the modular group. They ask whether the Manin–Drinfeld principle holds, namely, if the divisors supported on the cusps of those curves are torsion in the Jacobian. We give a model over $\mathbf {Z}[\mu _N,1/N]$ of the Nth Heisenberg curve as covering of the Nth Fermat curve. We show that the Manin–Drinfeld principle holds for $N=3$, but not for $N=5$. We show that the description by generator and relations due to Rohrlich of the cuspidal subgroup of the Fermat curve is explained by the Heisenberg covering, together with a higher covering of a similar nature. The curves $X_N$ and the classical modular curves $X(n)$, for n even integer, both dominate $X(2)$, which produces a morphism between Jacobians $J_N\rightarrow J(n)$. We prove that the latter has image $0$ or an elliptic curve of j-invariant $0$. In passing, we give a description of the homology of $X^{\prime }_{N}$.
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
The attractor conjecture for Calabi–Yau moduli spaces predicts the algebraicity of the moduli values of certain isolated points picked out by Hodge-theoretic conditions. Using tools from transcendence theory, we provide a family of counterexamples to the attractor conjecture in almost all odd dimensions conditional on a specific case of the Zilber–Pink conjecture in unlikely intersection theory; these Calabi–Yau manifolds were first studied by Dolgachev. We also give constructions of new families of Calabi–Yau varieties, analogous to the mirror quintic family, with all middle Hodge numbers equal to one, which would also give counterexamples to the attractor conjecture.
Kobayashi–Ochiai proved that the set of dominant maps from a fixed variety to a fixed variety of general type is finite. We prove the natural extension of their finiteness theorem to Campana’s orbifold pairs.
We give new descriptions of the Bruhat order and Demazure products of affine Weyl groups in terms of the weight function of the quantum Bruhat graph. These results can be understood to describe certain closure relations concerning the Iwahori–Bruhat decomposition of an algebraic group. As an application towards affine Deligne–Lusztig varieties, we present a new formula for generic Newton points.