We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider non-self-adjoint Dirac operators on a finite interval with complex-valued potentials and quasi-periodic boundary conditions. Necessary and sufficient conditions for a set of complex numbers to be the spectrum of the indicated problem are established.
Sufficient conditions are obtained for the oscillation of a general form of a linear second-order differential equation with discontinuous solutions. The innovations are that the impulse effects are in mixed form and the results obtained are applicable even if the impulses are small. The novelty of the results is demonstrated by presenting an example of an oscillating equation to which previous oscillation theorems fail to apply.
We study a fractional-order delayed predator-prey model with Holling–Tanner-type functional response. Mainly, by choosing the delay time
$\tau $
as the bifurcation parameter, we show that Hopf bifurcation can occur as the delay time
$\tau $
passes some critical values. The local stability of a positive equilibrium and the existence of the Hopf bifurcations are established, and numerical simulations for justifying the theoretical analysis are also presented.
Multi-compartment models described by systems of linear ordinary differential equations are considered. Catenary models are a particular class where the compartments are arranged in a chain. A unified methodology based on the Laplace transform is utilised to solve direct and inverse problems for multi-compartment models. Explicit formulas for the parameters in a catenary model are obtained in terms of the roots of elementary symmetric polynomials. A method to estimate parameters for a general multi-compartment model is also provided. Results of numerical simulations are presented to illustrate the effectiveness of the approach.
We introduce novel multi-agent interaction models of entropic spatially inhomogeneous evolutionary undisclosed games and their quasi-static limits. These evolutions vastly generalise first- and second-order dynamics. Besides the well-posedness of these novel forms of multi-agent interactions, we are concerned with the learnability of individual payoff functions from observation data. We formulate the payoff learning as a variational problem, minimising the discrepancy between the observations and the predictions by the payoff function. The inferred payoff function can then be used to simulate further evolutions, which are fully data-driven. We prove convergence of minimising solutions obtained from a finite number of observations to a mean-field limit, and the minimal value provides a quantitative error bound on the data-driven evolutions. The abstract framework is fully constructive and numerically implementable. We illustrate this on computational examples where a ground truth payoff function is known and on examples where this is not the case, including a model for pedestrian movement.
We consider inverse nodal problems for the Sturm–Liouville operators on the tree graphs. Can only dense nodes distinguish the tree graphs? In this paper it is shown that the data of dense-nodes uniquely determines the potential (up to a constant) on the tree graphs. This provides interesting results for an open question implied in the paper.
Motivated by the definition of rigid centres for planar differential systems, we introduce the study of rigid centres on the center manifolds of differential systems on $\mathbb {R}^{3}$. On the plane, these centres have been extensively studied and several interesting results have been obtained. We present results that characterize the rigid systems on $\mathbb {R}^{3}$ and solve the centre-focus problem for several families of rigid systems.
The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
An emerging technique in image segmentation, semi-supervised learning and general classification problems concerns the use of phase-separating flows defined on finite graphs. This technique was pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation10(3), 1090–1118), which used the Allen–Cahn flow on a graph, and was then extended in Merkurjev et al. (2013, SIAM J. Imaging Sci.6(4), 1903–1930) using instead the Merriman–Bence–Osher (MBO) scheme on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal.52(5), 4101–4139), we gave a theoretical justification for this use of the MBO scheme in place of Allen–Cahn flow, showing that the MBO scheme is a special case of a ‘semi-discrete’ numerical scheme for Allen–Cahn flow. In this paper, we extend this earlier work, showing that this link via the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein and Sternberg (1992, IMA J. Appl. Math.48, 249–264), we define a mass-conserving Allen–Cahn equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case of a semi-discrete scheme for mass-conserving Allen–Cahn. We give a theoretical analysis of this flow and scheme, proving various desired properties like existence and uniqueness of the flow and convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for solutions to the mass-conserving MBO scheme.
By developing a Green's function representation for the solution of the boundary value problem we study existence, uniqueness, and qualitative properties (e.g., positivity or monotonicity) of solutions to these problems. We apply our methods to fractional order differential equations. We also demonstrate an application of our methodology both to convolution equations with nonlocal boundary conditions as well as those with a nonlocal term in the convolution equation itself.
We assume that human carrying capacity is determined by food availability. We propose three classes of human population dynamical models of logistic type, where the carrying capacity is a function of the food production index. We also employ an integration-based parameter estimation technique to derive explicit formulas for the model parameters. Using actual population and food production index data, numerical simulations of our models suggest that an increase in food availability implies an increase in carrying capacity, but the carrying capacity is “self-limiting” and does not increase indefinitely.
This work investigates the existence and bifurcation structure of multi-pulse steady-state solutions to bistable lattice dynamical systems. Such solutions are characterized by multiple compact disconnected regions where the solution resembles one of the bistable states and resembles another trivial bistable state outside of these compact sets. It is shown that the bifurcation curves of these multi-pulse solutions lie along closed and bounded curves (isolas), even when single-pulse solutions lie along unbounded curves. These results are applied to a discrete Nagumo differential equation and we show that the hypotheses of this work can be confirmed analytically near the anti-continuum limit. Results are demonstrated with a number of numerical investigations.
We show that, if $b\in L^{1}(0,T;L_{\operatorname{loc}}^{1}(\mathbb{R}))$ has a spatial derivative in the John–Nirenberg space $\operatorname{BMO}(\mathbb{R})$, then it generates a unique flow $\unicode[STIX]{x1D719}(t,\cdot )$ which has an $A_{\infty }(\mathbb{R})$ density for each time $t\in [0,T]$. Our condition on the map $b$ is not only optimal but also produces a sharp quantitative estimate for the density. As a killer application we achieve the well-posedness for a Cauchy problem of the transport equation in $\operatorname{BMO}(\mathbb{R})$.
We analyse the structure of equilibria of a coagulation–fragmentation–death model of silicosis. We present exact multiplicity results in the particular case of piecewise constant coefficients, results on existence and non-existence of equilibria in the general case, as well as precise asymptotics for the infinite series that arise in the case of power law coefficients.
The purpose of this work is to investigate the properties of spreading speeds for the monotone semiflows. According to the fundamental work of Liang and Zhao [(2007) Comm. Pure Appl. Math.60, 1–40], the spreading speeds of the monotone semiflows can be derived via the principal eigenvalue of linear operators relating to the semiflows. In this paper, we establish a general method to analyse the sign and the continuity of the spreading speeds. Then we consider a limiting case that admits no spreading phenomenon. The results can be applied to the model of cellular neural networks (CNNs). In this model, we find the rule which determines the propagating phenomenon by parameters.
Global weak solutions to the continuous Smoluchowski coagulation equation (SCE) are constructed for coagulation kernels featuring an algebraic singularity for small volumes and growing linearly for large volumes, thereby extending previous results obtained in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular, linear growth at infinity of the coagulation kernel is included and the initial condition may have an infinite second moment. Furthermore, all weak solutions (in a suitable sense) including the ones constructed herein are shown to be mass-conserving, a property which was proved in Norris (1999) under stronger assumptions. The existence proof relies on a weak compactness method in L1 and a by-product of the analysis is that both conservative and non-conservative approximations to the SCE lead to weak solutions which are then mass-conserving.
Evolution of planar curves under a nonlocal geometric equation is investigated. It models the simultaneous contraction and growth of carbonate particles called ooids in geosciences. Using classical ODE results and a bijective mapping, we demonstrate that the steady parameters associated with the physical environment determine a unique, time-invariant, compact shape among smooth, convex curves embedded in ℝ2. It is also revealed that any time-invariant solution possesses D2 symmetry. The model predictions remarkably agree with ooid shapes observed in nature.
In this work we are concerned with the existence of fixed points for multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we establish the existence of a fixed point of a multivalued map in a vector subspace where the map is only locally Lipschitz continuous. We apply our results to the existence of mild solutions and asymptotically almost periodic solutions of an abstract Cauchy problem governed by a first-order differential inclusion. Our results are obtained by using fixed point theory for the measure of noncompactness.