To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We suggest an alternative mathematical model for the electron in dimension 1+2. We think of our (1+2)-dimensional spacetime as an elastic continuum whose material points can experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis which gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory we choose a coframe and a density. We then add an extra (third) spatial dimension, extend our coframe and density into dimension 1+3, choose a conformally invariant Lagrangian proportional to axial torsion squared, roll up the extra dimension into a circle so as to incorporate mass and return to our original (1+2)-dimensional spacetime by separating out the extra coordinate. The main result of our paper is the theorem stating that our model is equivalent to the Dirac equation in dimension 1+2. In the process of analysing our model we also establish an abstract result, identifying a class of nonlinear second order partial differential equations which reduce to pairs of linear first order equations.
We establish the multiplicity of positive weak solutions for the quasilinear Dirichlet problem −Lpu + |u|p−2u = h(u) in Ωλ, u = 0 on ∂Ωλ, where Ωλ = λΩ, Ω is a bounded domain in ℝN, λ is a positive parameter, Lpu ≐ Δpu + Δp(u2)u and the nonlinear term h(u) has subcritical growth. We use minimax methods together with the Lyusternik–Schnirelmann category theory to get multiplicity of positive solutions.
We study the Cauchy problem for the generalised fourth-order Schrödinger equation for data u0 in critical Sobolev spaces . With small initial data we obtain global well-posedness results. Our proof relies heavily on the method developed by Kenig et al. [‘Well-posedness and scattering results for the generalised Korteweg–de Vries equation via the contraction principle’, Commun. Pure Appl. Math.46 (1993), 527–620].
The Exp-function method is applied to construct a new type of solution of the coupled (2+1)-dimensional nonlinear system of Schrödinger equations. It is shown that the method provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.
We prove that the modified Benjamin–Ono–Burgers equation is globally well-posed in Hs for s>0. Moreover, we show that the solution of the modified Benjamin–Ono–Burgers equation converges to that of the modified Benjamin–Ono equation in the natural space C([0,T];Hs), s≥1/2, as the dissipative coefficient ϵ goes to zero, provided that the L2 norm of the initial data is sufficiently small.
We give a simpler and refined proof of some blow-up results of smooth solutions to the Cauchy problem for the Navier–Stokes equations of compressible, viscous and heat-conducting fluids in arbitrary space dimensions. Our main results reveal that smooth solutions with compactly supported initial density will blow up in finite time, and that if the initial density decays at infinity in space, then there is no global solution for which the velocity decays as the reciprocal of the elapsed time.
A two-level defect–correction method for the steady-state Navier–Stokes equations with a high Reynolds number is considered in this paper. The defect step is accomplished in a coarse-level subspace Hm by solving the standard Galerkin equation with an artificial viscosity parameter σ as a stability factor, and the correction step is performed in a fine-level subspace HM by solving a linear equation. H1 error estimates are derived for this two-level defect–correction method. Moreover, some numerical examples are presented to show that the two-level defect–correction method can reach the same accuracy as the standard Galerkin method in fine-level subspace HM. However, the two-level method will involve much less work than the one-level method.
We study the sharp threshold for blow-up and global existence and the instability of standing wave eiωtuω(x) for the Davey–Stewartson system
in ℝ3, where uω is a ground state. By constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp criterion for global existence and blow-up of the solutions to (DS), which can be used to show that there exist blow-up solutions of (DS) arbitrarily close to the standing waves.
We extend Penrose's peeling model for the asymptotic behaviour of solutions to the scalar wave equation at null infinity on asymptotically flat backgrounds, which is well understood for flat space-time, to Schwarzschild and the asymptotically simple space-times of Corvino–Schoen/Chrusciel–Delay. We combine conformal techniques and vector field methods: a naive adaptation of the ‘Morawetz vector field’ to a conformal rescaling of the Schwarzschild metric yields a complete scattering theory on Corvino–Schoen/Chrusciel–Delay space-times. A good classification of solutions that peel arises from the use of a null vector field that is transverse to null infinity to raise the regularity in the estimates. We obtain a new characterization of solutions admitting a peeling at a given order that is valid for both Schwarzschild and Minkowski space-times. On flat space-time, this allows larger classes of solutions than the characterizations used since Penrose's work. Our results establish the validity of the peeling model at all orders for the scalar wave equation on the Schwarzschild metric and on the corresponding Corvino–Schoen/Chrusciel–Delay space-times.
In this article, we prove the existence and uniqueness of solution for the Cauchy problem of the Landau-Lifshitz equation of ferromagnetism with external magnetic field. We also show that the solution is globally regular with the exception of at most finitely many blow-up points. An energy identity at blow-up points is presented.
Maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation. The initial value function is assumed to be radial in ℝn, n≥2.