We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many boundary value problems occur in a natural way while studying fluid flow problems in a channel. The solutions of two such boundary value problems are obtained and analysed in the context of flow problems involving three layers of fluids of different constant densities in a channel, associated with an impermeable bottom that has a small undulation. The top surface of the channel is either bounded by a rigid lid or free to the atmosphere. The fluid in each layer is assumed to be inviscid and incompressible, and the flow is irrotational and two-dimensional. Only waves that are stationary with respect to the bottom profile are considered in this paper. The effect of surface tension is neglected. In the process of obtaining solutions for both the problems, regular perturbation analysis along with a Fourier transform technique is employed to derive the first-order corrections of some important physical quantities. Two types of bottom topography, such as concave and convex, are considered to derive the profiles of the interfaces. We observe that the profiles are oscillatory in nature, representing waves of variable amplitude with distinct wave numbers propagating downstream and with no wave upstream. The observations are presented in tabular and graphical forms.
We introduce a novel solution concept, denoted ${\it\alpha}$-dissipative solutions, that provides a continuous interpolation between conservative and dissipative solutions of the Cauchy problem for the two-component Camassa–Holm system on the line with vanishing asymptotics. All the ${\it\alpha}$-dissipative solutions are global weak solutions of the same equation in Eulerian coordinates, yet they exhibit rather distinct behavior at wave breaking. The solutions are constructed after a transformation into Lagrangian variables, where the solution is carefully modified at wave breaking.
This paper presents a model of a 1D–1D dynamic multi-structure, supporting propagation of a transition wave. It is used to explain the recent phenomenon of the collapse of the San Saba bridge. An analytical model is supplied with illustrative numerical simulations.
We study the propagation of wave packets for a one-dimensional system of two coupled Schrödinger equations with a cubic nonlinearity, in the semiclassical limit. Couplings are induced by the nonlinearity and by the potential, whose eigenvalues present an avoided crossing: at one given point, the gap between them reduces as the semiclassical parameter becomes smaller. For data which are coherent states polarized along an eigenvector of the potential, we prove that when the wave function propagates through the avoided crossing point there are transitions between the eigenspaces at leading order. We analyze the nonlinear effects, which are noticeable away from the crossing point, but see that in a small time interval around this point the nonlinearity’s role is negligible at leading order, and the transition probabilities can be computed with the linear Landau–Zener formula.
This paper is concerned with the Cauchy problem for a nonlinear Schrödinger equation with a harmonic potential and exponential growth nonlinearity in two space dimensions. In the defocusing case, global well-posedness is obtained. In the focusing case, existence of nonglobal solutions is discussed via potential-well arguments.
In this paper, we consider the existence of multi-soliton structures for the nonlinear Klein–Gordon (NLKG) equation in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{R}^{1+d}$. We prove that, independently of the unstable character of NLKG solitons, it is possible to construct a $N$-soliton family of solutions to the NLKG equation, of dimension $2N$, globally well defined in the energy space $H^1\times L^2$ for all large positive times. The method of proof involves the generalization of previous works on supercritical Nonlinear Schrödinger (NLS) and generalized Korteweg–de Vries (gKdV) equations by Martel, Merle, and the first author [R. Côte, Y. Martel and F. Merle, Rev. Mat. Iberoam. 27 (1) (2011), 273–302] to the wave case, where we replace the unstable mode associated to the linear NLKG operator by two generalized directions that are controlled without appealing to modulation theory. As a byproduct, we generalize the linear theory described in Grillakis, Shatah, and Strauss [J. Funct. Anal. 74 (1) (1987), 160–197] and Duyckaerts and Merle [Int. Math. Res. Pap. IMRP (2008), Art ID rpn002] to the case of boosted solitons, and provide new solutions to be studied using the recent work of Nakanishi and Schlag [Zurich Lectures in Advanced Mathematics, vi+253 pp (European Mathematical Society (EMS), Zürich, 2011)] theory.
In this paper, we obtain the well posedness of the linear stochastic Korteweg–de Vries equation by the Galerkin method, and then establish the Carleman estimate, leading to the unique continuation property (UCP) for the linear stochastic Korteweg–de Vries equation. This UCP cannot be obtained from the classical Holmgren uniqueness theorem.
We establish vortex dynamics for the time-dependent Ginzburg–Landau equation for asymptotically large numbers of vortices for the problem without a gauge field and either Dirichlet or Neumann boundary conditions. As our main tool, we establish quantitative bounds on several fundamental quantities, including the kinetic energy, that lead to explicit convergence rates. For dilute vortex liquids, we prove that sequences of solutions converge to the hydrodynamic limit.
The aim of this paper is to obtain a new unique continuation property (UCP) for the Korteweg–de Vries equation posed on a finite interval. Compared with the previous UCP, we need fewer conditions on the solution. For this purpose, we have to establish a global Carleman estimate for the Korteweg–de Vries equation.
We propose and study a number of layer methods for Navier‒Stokes equations (NSEs) with spatial periodic boundary conditions. The methods are constructed using probabilistic representations of solutions to NSEs and exploiting ideas of the weak sense numerical integration of stochastic differential equations. Despite their probabilistic nature, the layer methods are nevertheless deterministic.
A second-order in time finite-difference scheme using a modified predictor–corrector method is proposed for the numerical solution of the generalized Burgers–Fisher equation. The method introduced, which, in contrast to the classical predictor–corrector method is direct and uses updated values for the evaluation of the components of the unknown vector, is also analysed for stability. Its efficiency is tested for a single-kink wave by comparing experimental results with others selected from the available literature. Moreover, comparisons with the classical method and relevant analogous modified methods are given. Finally, the behaviour and physical meaning of the two-kink wave arising from the collision of two single-kink waves are examined.
We prove the compactness of critical Sobolev embeddings with applications to nonlinear singular Schrödinger equations and provide a unified treatment in dimensions N > 2 and N = 2, based on a somewhat unexpectedly broad array of parallel properties between spaces and H10 of the unit disc. These properties include Leray inequality for N = 2 as a counterpart of Hardy inequality for N > 2, pointwise estimates by ground states r(2−N)/2 and of the respective Hardy-type inequalities, as well as compactness of the limiting Sobolev embeddings once the Sobolev norm is appended by a potential term whose growth at singularities exceeds that of the corresponding Hardy-type potential.
This paper is concerned with a mass concentration phenomenon for a two-dimensional nonelliptic Schrödinger equation. It is well known that this phenomenon occurs when the ${L}^{4} $-norm of the solution blows up in finite time. We extend this result to the case where a mixed norm of the solution blows up in finite time.
We suggest an alternative mathematical model for the electron in dimension 1+2. We think of our (1+2)-dimensional spacetime as an elastic continuum whose material points can experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis which gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory we choose a coframe and a density. We then add an extra (third) spatial dimension, extend our coframe and density into dimension 1+3, choose a conformally invariant Lagrangian proportional to axial torsion squared, roll up the extra dimension into a circle so as to incorporate mass and return to our original (1+2)-dimensional spacetime by separating out the extra coordinate. The main result of our paper is the theorem stating that our model is equivalent to the Dirac equation in dimension 1+2. In the process of analysing our model we also establish an abstract result, identifying a class of nonlinear second order partial differential equations which reduce to pairs of linear first order equations.
We establish the multiplicity of positive weak solutions for the quasilinear Dirichlet problem −Lpu + |u|p−2u = h(u) in Ωλ, u = 0 on ∂Ωλ, where Ωλ = λΩ, Ω is a bounded domain in ℝN, λ is a positive parameter, Lpu ≐ Δpu + Δp(u2)u and the nonlinear term h(u) has subcritical growth. We use minimax methods together with the Lyusternik–Schnirelmann category theory to get multiplicity of positive solutions.
We study the Cauchy problem for the generalised fourth-order Schrödinger equation for data u0 in critical Sobolev spaces . With small initial data we obtain global well-posedness results. Our proof relies heavily on the method developed by Kenig et al. [‘Well-posedness and scattering results for the generalised Korteweg–de Vries equation via the contraction principle’, Commun. Pure Appl. Math.46 (1993), 527–620].
The Exp-function method is applied to construct a new type of solution of the coupled (2+1)-dimensional nonlinear system of Schrödinger equations. It is shown that the method provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.
We prove that the modified Benjamin–Ono–Burgers equation is globally well-posed in Hs for s>0. Moreover, we show that the solution of the modified Benjamin–Ono–Burgers equation converges to that of the modified Benjamin–Ono equation in the natural space C([0,T];Hs), s≥1/2, as the dissipative coefficient ϵ goes to zero, provided that the L2 norm of the initial data is sufficiently small.
We give a simpler and refined proof of some blow-up results of smooth solutions to the Cauchy problem for the Navier–Stokes equations of compressible, viscous and heat-conducting fluids in arbitrary space dimensions. Our main results reveal that smooth solutions with compactly supported initial density will blow up in finite time, and that if the initial density decays at infinity in space, then there is no global solution for which the velocity decays as the reciprocal of the elapsed time.
A two-level defect–correction method for the steady-state Navier–Stokes equations with a high Reynolds number is considered in this paper. The defect step is accomplished in a coarse-level subspace Hm by solving the standard Galerkin equation with an artificial viscosity parameter σ as a stability factor, and the correction step is performed in a fine-level subspace HM by solving a linear equation. H1 error estimates are derived for this two-level defect–correction method. Moreover, some numerical examples are presented to show that the two-level defect–correction method can reach the same accuracy as the standard Galerkin method in fine-level subspace HM. However, the two-level method will involve much less work than the one-level method.