We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for $p\geqslant 1$, the $p$th moment of suprema of linear combinations of independent centered random variables are comparable with the sum of the first moment and the weak $p$th moment provided that $2q$th and $q$th integral moments of these variables are comparable for all $q\geqslant 2$. The latest condition turns out to be necessary in the independent and identically distributed case.
Let X and Y be two independent and nonnegative random variables with corresponding distributions F and G. Denote by H the distribution of the product XY, called the product convolution of F and G. Cline and Samorodnitsky (1994) proposed sufficient conditions for H to be subexponential, given the subexponentiality of F. Relying on a related result of Tang (2008) on the long-tail of the product convolution, we obtain a necessary and sufficient condition for the subexponentiality of H, given that of F. We also study the reverse problem and obtain sufficient conditions for the subexponentiality of F, given that of H. Finally, we apply the obtained results to the asymptotic study of the ruin probability in a discrete-time insurance risk model with stochastic returns.
The continuum random cluster model is a Gibbs modification of the standard Boolean model with intensity z > 0 and law of radii Q. The formal unnormalised density is given by qNcc, where q is a fixed parameter and Ncc is the number of connected components in the random structure. We prove for a large class of parameters that percolation occurs for large enough z and does not occur for small enough z. We provide an application to the phase transition of the Widom–Rowlinson model with random radii. Our main tools are stochastic domination properties, a detailed study of the interaction of the model, and a Fortuin–Kasteleyn representation.
In this paper we study the quasi-stationary behavior of absorbed one-dimensional diffusions. We obtain necessary and sufficient conditions for the exponential convergence to a unique quasi-stationary distribution in total variation, uniformly with respect to the initial distribution. An important tool is provided by one-dimensional strict local martingale diffusions coming down from infinity. We prove, under mild assumptions, that their expectation at any positive time is uniformly bounded with respect to the initial position. We provide several examples and extensions, including the sticky Brownian motion and some one-dimensional processes with jumps.
We consider a refracted jump diffusion process having two-sided jumps with rational Laplace transforms. For such a process, by applying a straightforward but interesting approach, we derive formulae for the Laplace transform of its distribution. Our formulae are presented in an attractive form and the approach is novel. In particular, the idea in the application of an approximating procedure is remarkable. In addition, the results are used to price variable annuities with state-dependent fees.
We study how to sample paths of a random walk up to the first time it crosses a fixed barrier, in the setting where the step sizes are independent and identically distributed with negative mean and have a regularly varying right tail. We introduce a desirable property for a change of measure to be suitable for exact simulation. We study whether the change of measure of Blanchet and Glynn (2008) satisfies this property and show that it does so if and only if the tail index α of the right tail lies in the interval (1, 3/2).
We develop a computational approximation to the intensity of a Gibbs spatial point process having interactions of any order. Limit theorems from stochastic geometry, and small-sample probabilities estimated once and for all by an extensive simulation study, are combined with scaling properties to form an approximation to the moment generating function of the sufficient statistic under a Poisson process. The approximate intensity is obtained as the solution of a self-consistency equation.
We present a stand-alone simple proof of a probabilistic interpretation of the Gaussian binomial coefficients by conditioning a random walk to hit a given lattice point at a given time.
Let X(t), t ∈ ℝd, be a centered Gaussian random field with continuous trajectories and set ξu(t) = X(f(u)t), t ∈ ℝd, with f some positive function. Using classical results we can establish the tail asymptotics of ℙ{Γ(ξu) > u} as u → ∞ with Γ(ξu) = supt ∈ [0, T]d ξu(t), T > 0, by requiring that f(u) tends to 0 as u → ∞ with speed controlled by the local behavior of the correlation function of X. Recent research shows that for applications, more general functionals than the supremum should be considered and the Gaussian field can depend also on some additional parameter τu ∈ K say ξu,τu(t), t ∈ ℝd. In this paper we derive uniform approximations of ℙ{Γ(ξu,τu) > u} with respect to τu, in some index set Ku as u → ∞. Our main result has important theoretical implications; two applications are already included in Dȩbicki et al. (2016), (2017). In this paper we present three additional applications. First we derive uniform upper bounds for the probability of double maxima. Second, we extend the Piterbarg–Prisyazhnyuk theorem to some large classes of homogeneous functionals of centered Gaussian fields ξu. Finally, we show the finiteness of generalized Piterbarg constants.
In the first part of this paper we consider a general stationary subcritical cluster model in ℝd. The associated pair-connectedness function can be defined in terms of two-point Palm probabilities of the underlying point process. Using Palm calculus and Fourier theory we solve the Ornstein–Zernike equation (OZE) under quite general distributional assumptions. In the second part of the paper we discuss the analytic and combinatorial properties of the OZE solution in the special case of a Poisson-driven random connection model.
Zero-sum two-person finite undiscounted (limiting ratio average) semi-Markov games (SMGs) are considered with a general multichain structure. We derive the strategy evaluation equations for stationary strategies of the players. A relation between the payoff in the multichain SMG and that in the associated stochastic game (SG) obtained by a data-transformation is established. We prove that the multichain optimality equations (OEs) for an SMG have a solution if and only if the associated SG has optimal stationary strategies. Though the solution of the OEs may not be optimal for an SMG, we establish the significance of studying the OEs for a multichain SMG. We provide a nice example of SMGs in which one player has no optimal strategy in the stationary class but has an optimal semistationary strategy (that depends only on the initial and current state of the game). For an SMG with absorbing states, we prove that solutions in the game where all players are restricted to semistationary strategies are solutions for the unrestricted game. Finally, we prove the existence of stationary optimal strategies for unichain SMGs and conclude that the unichain condition is equivalent to require that the game satisfies some recurrence/ergodicity/weakly communicating conditions.
In practice, it is not possible to observe a whole max-stable random field. Therefore, we propose a method to reconstruct a max-stable random field in C([0, 1]k) by interpolating its realizations at finitely many points. The resulting interpolating process is again a max-stable random field. This approach uses a generalized max-linear model. Promising results have been established in the k = 1 case of Falk et al. (2015). However, the extension to higher dimensions is not straightforward since we lose the natural order of the index space.
In this paper, by using the tail asymptotics derived by Dębicki et al. (2016), we prove the Gumbel limit laws for the maximum of a class of nonhomogeneous Gaussian random fields. As an application of the main results, we derive the Gumbel limit law for Shepp statistics of fractional Brownian motion and Gaussian integrated processes.
Two different ways of trimming the sample path of a stochastic process in 𝔻[0, 1]: global ('trim as you go') trimming and record time ('lookback') trimming are analysed to find conditions for the corresponding operators to be continuous with respect to the (strong) J1-topology. A key condition is that there should be no ties among the largest ordered jumps of the limit process. As an application of the theory, via the continuous mapping theorem, we prove limit theorems for trimmed Lévy processes, using the functional convergence of the underlying process to a stable process. The results are applied to a reinsurance ruin time problem.
During the last decades, quite a number of interacting particle systems have been introduced and studied in the crossover area of mathematics and statistical physics. Some of these can be seen as simplistic models for opinion formation processes in groups of interacting people. In the model introduced by Deffuant et al. (2000), agents that are neighbors on a given network graph, randomly meet in pairs and approach a compromise if their current opinions do not differ by more than a given threshold value θ. We consider the two-sided infinite path ℤ as the underlying graph and extend existing models to a setting in which opinions are given by probability distributions. Similar to what has been shown for finite-dimensional opinions, we observe a dichotomy in the long-term behavior of the model, but only if the initial narrow mindedness of the agents is restricted.
Extreme value theory for random vectors and stochastic processes with continuous trajectories is usually formulated for random objects where the univariate marginal distributions are identical. In the spirit of Sklar's theorem from copula theory, such marginal standardization is carried out by the pointwise probability integral transform. Certain situations, however, call for stochastic models whose trajectories are not continuous but merely upper semicontinuous (USC). Unfortunately, the pointwise application of the probability integral transform to a USC process does not, in general, preserve the upper semicontinuity of the trajectories. In this paper we give sufficient conditions to enable marginal standardization of USC processes and we state a partial extension of Sklar's theorem for USC processes. We specialize the results to max-stable processes whose marginal distributions and normalizing sequences are allowed to vary with the coordinate.
We consider a continuous, infinitely divisible random field in ℝd, d = 1, 2, 3, given as an integral of a kernel function with respect to a Lévy basis with convolution equivalent Lévy measure. For a large class of such random fields, we compute the asymptotic probability that the excursion set at level x contains some rotation of an object with fixed radius as x → ∞. Our main result is that the asymptotic probability is equivalent to the right tail of the underlying Lévy measure.
We consider a weighted stationary spherical Boolean model in ℝd to which a Matérn-type thinning is applied. Assuming that the radii of the balls in the Boolean model have regularly varying tails, we establish the asymptotic behavior of the tail of the contact distribution of the thinned germ–grain model under four different thinning procedures of the original model.
We model in a dynamic way an insider's private information flow which is successively augmented by a family of initial enlargement of filtrations. According to the a priori available information, we propose several density hypotheses which are presented in hierarchical order from the weakest to the strongest. We compare these hypotheses, in particular, with Jacod's one, and deduce conditional expectations under each of them by providing consistent expressions with respect to the common reference filtration. Finally, this framework is applied to a default model with insider information on the default threshold and some numerical illustrations are performed.
We study a problem when the optimal stopping for a one-dimensional diffusion process is generated by a threshold strategy. Namely, we give necessary and sufficient conditions (on the diffusion process and the payoff function) under which a stopping set has a threshold structure.