We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X0, X1…Xn,… be a stationary Gaussian process. We give sufficient conditions for the expected number of real zeros of the polynomial Qn (z) = Σnj =o X jzj to be (2/ π)log n as n tends to infinity.
The leading term approach to rates of convergence is employed to derive non-uniform and global descriptions of the rate of convergence in the central limit theorem. Both upper and lower bounds are obtained, being of the same order of magnitude, modulo terms of order n-r. We are able to derive general results by considering only those expansions with an odd number of terms.
Generalised k-statistics associated with multi-indexed arrays of random variables satisfying a generalised form of exchangeability are studied. By showing that they form multi-indexed reversed martingales and that the associated family of σ-fields possesses certain conditional independence properties, conditions for the a.s. convergence of generalised k-statistics are obtained. When the arrays of random variables are sums of independent arrays of independent effects, as is the case with the standard random effects anova models, the limits are identified as the associated generalixed cumulants.
A compensator is defined for a point process in two dimensions. It is shown that a Poisson process is characterized by a continuous deterministic compensator. Sufficient conditions are given for convergence in distribution of a sequence of two-dimensional point processes in the Skorokhod topology to a Poisson process when the corresponding sequence of compensators converges pointwise in probability to a continuous deterministic function.
It is shown that a positive measure μ on the Borel subsets of Rk is translation-bounded if and only if the Fourier transform of the indicator function of every bounded Borel subset of Rk belongs to L2(μ).
Random Fourier series are studied for a class of compact abelian hypergroups. The randomizing factors are assumed to be independent and uniformly subgaussian. In the presence of a natural teachnical hypothesis, an entropy condition of Dudley is shown to be sufficient for almost sure continuity. The classical results on almost sure membership in Lp, where p < ∞, are generalized to this setting. As an application, it is shown that a simple condition on the dual object implies that the de Leeuw-Kahane-Katznelson phenomenon occurs. Another application is the analogue of a classical sufficient condition for almost sure continuity. Examples illustrating the general theory are given for the hypergroup of conjugacy classes of SU(2) and for a class of compact countable hypergroups.
A new necessary and sufficient condition for a distribution of unbounded support to be in a domain of partial attraction is given. This relates the recent work of [5] and [6].
The aim of this paper is to show that some of the known properties of distributions in the domain of attraction of a stable law have counterparts for distributions which are stochastically compact in the sense of Feller. This enables us to unify the ideas of Feller and Doeblin, who first studied the concept of stochastic compactness, and give new characterizations of stochastic compactness and the domain of attraction of the normal distribution.
The main purpose of the paper is to give necessary and sufficient conditions for the almost sure boundedness of (Sn – αn)/B(n), where Sn = X1 + X2 + … + XmXi being independent and identically distributed random variables, and αnand B(n) being centering and norming constants. The conditions take the form of the convergence or divergence of a series of a geometric subsequence of the sequence P(Sn − αn > a B(n)), where a is a constant. The theorem is distinguished from previous similar results by the comparative weakness of the subsidiary conditions and the simplicity of the calculations. As an application, a law of the iterated logarithm general enough to include a result of Feller is derived.
A recent result of Rogozin on the relative stability of a distribution function is extended, by giving equivalences for relative stability in terms of truncated moments of the distribution and in terms of the real and imaginary parts of the characteristic function. As an application, the known results on centering distributions in the domain of attraction of a stable law are extended to the case of stochastically compact distributions.
An early extension of Lindeberg's central limit theorem was Bernstein's (1939) discovery of necessary and sufficient conditions for the convergence of moments in the central limit theorem. Von Bahr (1965) made a study of some asymptotic expansions in the central limit theorem, and obtained rates of convergence for moments. However, his results do not in general imply that the moments converge. Some better rates have been obtained by Bhattacharya and Rao for moments between the second and third. In this paper we give improved rates of convergence for absolute moments between the third and fourth.