We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Shanthikumar and Sumita (1986) proved that the stationary system queue length distribution just after a departure instant is geometric for GI/GI/1 with LCFS-P/H service discipline and with a constant acceptance probability of an arriving customer, where P denotes preemptive and H is a restarting policy which may depend on the history of preemption. They also got interesting relationships among characteristics. We generalize those results for G/G/1 with an arbitrary restarting LCFS-P and with an arbitrary acceptance policy. Several corollaries are obtained. Fakinos' (1987) and Yamazaki's (1990) expressions for the system queue length distribution are extended. For a Poisson arrival case, we extend the well-known insensitivity for LCFS-P/resume, and discuss the stationary distribution for LCFS-P/repeat.
Two recent papers by Petruccelli and Woolford (1984) and Chan et al. (1985) showed that the key element governing ergodicity of a threshold AR(1) model is the joint behavior of the two linear AR(1) pieces falling in the two boundary threshold regimes. They used essentially the necessary and sufficient conditions for ergodicity of a general Markov chain of Tweedie (1974), (1975) in a rather clever manner. However, it is difficult to extend the results to the more general threshold ARMA models. Besides, irreducibility is also required to apply Tweedie's results. In this paper, instead of pursuing the ideas in Tweedie's results, we shall develop a criterion similar in spirit to the technique used by Beneš (1967) in the context of continuous-time Markov chains. Consequently, we derive a necessary and sufficient condition for existence of a strictly stationary solution of a general non-linear ARMA model to be introduced in Section 2 of this paper. This condition is then applied to the threshold ARMA(1, q) model to yield a sufficient condition for strict stationarity which is identical to the condition given by Petruccelli and Woolford (1984) for the threshold AR(1). Hence, the conjecture that the moving average component does not affect stationarity is partially verified. Furthermore, under an additional irreducibility assumption, ergodicity of a non-linear ARMA model is established. The paper then concludes with a necessary condition for stationarity of the threshold ARMA(1, q) model.
For linear-cost-adjusted and geometric-discounted infinite sequences of i.i.d. random variables, point process convergence results are proved as the cost or discounting effect diminishes. These process convergence results are combined with continuous-mapping principles to obtain results on joint convergence of suprema and threshold-stopped random variables, and last-exit times and locations. Applications are made to several classical optimal stopping problems in these settings.
Limit Statements obtainable by the key renewal theorem are of the form EXt = v(t) + o(1), as t →∞. We show how to delineate the limit function v for processes X associated with crudely regenerative phenomena. Included are refinements of classical limit theorems for Markov and regenerative processes, limits of sums of stationary random variables, and limits for integrals and derivatives of EXt.
This article reviews results related to event and time averages (EATA) for point process models, including PASTA, ASTA and ANTIPASTA under general hypotheses. In particular, the results for the stationary case relating the Palm and martingale approach are reviewed. The non-stationary case is discussed in the martingale framework where minimal conditions for ASTA generalizing earlier work are presented in a unified framework for the discrete- and continuous-time cases. In addition, necessary and sufficient conditions for ASTA to hold in the stationary case are discussed in the case even when stochastic intensities may not exist and a short proof of the ANTIPASTA results known to date are given.
For a two-dimensional random walk {X (n) = (X(n)1, X(n)2)T, n ∈ ℕ0} with correlated components the first-crossing-time probability problem through unit-slope straight lines x2 = x1 - r(r = 0,1) is analysed. The p.g.f.'s for the first-crossing-time probabilities are expressed as solutions of a fourth-degree algebraic equation and are then exploited to obtain the first-crossing-time probabilities. Several additional results, including the mean first-crossing time and the probability of ultimate crossing, are also given.
We obtain a limit theorem for the joint distribution of the maximum value and sample mean of a random length sequence of independent and identically distributed random variables. This extends a previous bivariate convergence result for fixed length sequences and incidentally yields a new proof of Berman's classical limit theorem for the maximum value of a random number of random variables. Our approach uses a property of record time sequences and leads to probabilistically intuitive proofs. We also consider the partition of a finite interval into a random number of subintervals by the points of a non-delayed renewal process. Using the bivariate convergence result for random length sequences, we establish a limit theorem for the joint distribution of the number and maximum length of the subintervals as the interval length becomes large. This leads to limiting results for the ratio of the maximum to the mean subinterval length. Such results are of interest in connection with a simple model of parallel processing.
Pitman has shown that if X is Brownian motion with maximum process M, then 2M – X is a BES0(3) process. We show that this can be seen by looking at finite-dimensional densities.
It is shown that the two descriptions of the ages of alleles corresponding to the two formulations of the stationary infinitely-many-neutral-alleles diffusion model discussed by Ethier (1990a) are equivalent.
The paper presents a method of computing the extremal index for a discrete-time stationary Markov chain in continuous state space. The method is based on the assumption that bivariate margins of the process are in the domain of attraction of a bivariate extreme value distribution. Scaling properties of bivariate extremes then lead to a random walk representation for the tail behaviour of the process, and hence to computation of the extremal index in terms of the fluctuation properties of that random walk. The result may then be used to determine the asymptotic distribution of extreme values from the Markov chain.
Simple necessary and sufficient conditions for a function to be concave in terms of its shifted Laplace transform are given. As an application of this result, we show that the expected local time at zero of a reflected Lévy process with no negative jumps, starting from the origin, is a concave function of the time variable. A special case is the expected cumulative idle time in an M/G/1 queue. An immediate corollary is the concavity of the expected value of the reflected Lévy process itself. A special case is the virtual waiting time in an M/G/1 queue.
We have furnished further examples on the connection between some standard one-dimensional chaotic deterministic models and stochastic time series models via time reversal.
This paper complements two previous studies (Daley and Rolski (1984), (1991)) by investigating limit properties of the waiting time in k-server queues with renewal arrival process under ‘light traffic' conditions. Formulae for the limits of the probability of waiting and the waiting time moments are derived for the two approaches of dilation and thinning of the arrival process. Asmussen's (1991) approach to light traffic limits applies to the cases considered, of which the Poisson arrival process (i.e. M/G/k) is a special case and for which formulae are given.
An efficient algorithm to compute upper and lower bounds for the first-passage time in the presence of a second absorbing barrier by means of a continuously differentiable decomposable process, e.g. a smooth function of a continuously differentiable Gaussian vector field, is given. The method is used to obtain accurate approximations for the joint density of the zero-crossing wavelength and amplitude and the distribution of the rainflow cycle amplitude. Numerical examples illustrating the results are also given.
We consider integrals on Wiener space of the forms E(exp K(x)) and E(exp K(x) |L(x) = l) where K is a quadratic form and L a system of linear forms. We give explicit formulas for these integrals in terms of the operators K and L, in the case that these arise from quasilinear functions in the sense of Zhao (1981). As examples, we recover Lévy's area formula in the plane, and derive new formulas for the probability density of the radius of gyration tensor for Brownian paths.
Let s1, …, sn be generated governed by an r-state irreducible aperiodic Markov chain. The partial sum process is determined by a realization of states with s0 = α and the real-valued i.i.d. bounded variables Xαß associated with the transitions si = α, si+1 = β. Assume Χ αβ has negative stationary mean. The explicit limit distribution of the maximal segmental sum is derived. Computational methods with potential applications to the analysis of random Markov-dependent letter sequences (e.g. DNA and protein sequences) are presented.
Let Y0, Y1, Y2, … be an i.i.d. sequence of random variables with continuous distribution function, and let P be a simple point process on 0≦t≦∞, independent of the Yj's. We assume that P has a point at t = 0; we associate Yj with the jth point of j≧0, and we say that the Yj's occur at the arrival times of P. Y0 is considered a ‘reference value'. The first Yj (j≧1) to exceed all previous ones is called the first ‘record value', and the time of its occurrence is the first ‘record time'. Subsequent record values and times are defined analogously. We give an infinite series representation for the joint characteristic function of the first n record times, for general P; in some cases the series can be summed. We find the intensity of the record process when P is a general birth process, and when P is a linear birth process with m immigration sources we find the distribution of the number of records in (0, t]. For m = 0 (the Yule process) we give moments of record times and a compact form for the record process intensity. We show that the records occur according to a homogeneous Poisson process when m = 1, and we display a different model with the same behavior, leading to statistical non-identifiability if only the record times are observed. For m = 2, the records occur according to a semi-Markov process; again we display a different model with the same behavior. Finally we give a new derivation of the joint distribution of the interrecord times when P is an arbitrary Poisson process. We relate this result to existing work and to the classical record model. We also obtain a new characterization of the exponential distribution.
This paper introduces several versions of starting-stopping problem for the diffusion model defined in terms of a stochastic differential equation. The problem could be regarded as a stochastic differential game in which the player can only decide when to start the game and when to quit the game in order to maximize his fortune. Nested variational inequalities arise in studying such a problem, with which we are able to characterize the value function and to obtain optimal strategies.
We construct a risk process, where the law of the next jump time or jump size can depend on the past through earlier jump times and jump sizes. Some distributional properties of this process are established. The compensator is found and some martingale properties are discussed.
We consider continuous Gaussian stochastic process indexed by a compact subset of a vector space over a local field. Under suitable conditions we obtain an asymptotic expression for the probability that such a process will exceed a high level. An important component in the proof of these results is a theorem of independent interest concerning the amount of ‘time’ which the process spends at high levels.