To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A problem of optimal stopping of the discrete-time Markov process by two decision-makers (Player 1 and Player 2) in a competitive situation is considered. The zero-sum game structure is adopted. The gain function depends on states chosen by both decision-makers. When both players want to accept the realization of the Markov process at the same moment, the priority is given to Player 1. The construction of the value function and the optimal strategies for the players are given. The Markov chain case is considered in detail. An example related to the generalized secretary problem is solved.
Using a simple characterization of the Linnik distribution, discrete-time processes having a stationary Linnik distribution are constructed. The processes are structurally related to exponential processes introduced by Arnold (1989), Lawrance and Lewis (1981) and Gaver and Lewis (1980). Multivariate versions of the processes are also described. These Linnik models appear to be viable alternatives to stable processes as models for temporal changes in stock prices.
In a counting process considered at time t the focus is often on the length of the current interarrival time, whereas points in the past may be said to constitute information about the process. The paper introduces new concepts on how to quantify predictability of the future behavior of counting processes based on the past information and considers then situations in which the future points become more (or less) predictable. Various properties of our proposed concepts are studied and applications relevant to the reliability of repairable systems are given.
Let , be i.i.d. random closed sets in . Limit theorems for their normalized convex hulls conv () are proved. The limiting distributions correspond to C-stable random sets. The random closed set A is called C-stable if, for any , the sets anA and conv ( coincide in distribution for certain positive an, compact Kn, and independent copies A1, …, An of A. The distributions of C-stable sets are characterized via corresponding containment functionals.
A simple model for the intensity of infection during an epidemic in a closed population is studied. It is shown that the size of an epidemic (i.e. the number of persons infected) and the cumulative force of an epidemic (i.e. the amount of infectiousness that has to be avoided by a person that will stay uninfected during the entire epidemic) satisfy an equation of balance. Under general conditions, small deviances from this balance are, in large populations, asymptotically mixed normally distributed. For some special epidemic models the size of an asymptotically large epidemic is asymptotically normally distributed.
A Markovian arrival stream is a marked point process generated by the state transitions of a given Markovian environmental process and Poisson arrival rates depending on the environment. It is shown that to a given marked point process there is a sequence of such Markovian arrival streams with the property that as m →∞. Various related corollaries (involving stationarity, convergence of moments and ergodicity) and counterexamples are discussed as well.
The paper investigates stochastic processes directed by a randomized time process. A new family of directing processes called Hougaard processes is introduced. Monotonicity properties preserved under subordination, and dependence among processes directed by a common randomized time are studied. Results for processes subordinated to Poisson and stable processes are presented. Potential applications to shock models and threshold models are also discussed. Only Markov processes are considered.
We obtain a single formula which, when its components are adequately chosen, transforms itself into the main formulas of the Palm theory of point processes: Little's L = λW formula [10], Brumelle's H = λG formula [5], Neveu's exchange formula [14], Palm inversion formula and Miyazawa's rate conservation law [12]. It also contains various extensions of the above formulas and some new ones.
Let be the Brownian motion process starting at the origin, its primitive and Ut = (Xt+x + ty, Bt + y), , the associated bidimensional process starting from a point . In this paper we present an elementary procedure for re-deriving the formula of Lefebvre (1989) giving the Laplace–Fourier transform of the distribution of the couple (σ α, Uσa), as well as Lachal's (1991) formulae giving the explicit Laplace–Fourier transform of the law of the couple (σ ab, Uσab), where σ α and σ ab denote respectively the first hitting time of from the right and the first hitting time of the double-sided barrier by the process . This method, which unifies and considerably simplifies the proofs of these results, is in fact a ‘vectorial' extension of the classical technique of Darling and Siegert (1953). It rests on an essential observation (Lachal (1992)) of the Markovian character of the bidimensional process .
Using the same procedure, we subsequently determine the Laplace–Fourier transform of the conjoint law of the quadruplet (σ α, Uσa, σb, Uσb).
We consider the likelihood ratio tests to detect an epidemic alternative in the following two cases of normal observations: (1) the alternative specifies a square wave drift in the mean value of an i.i.d. sequence; (2) the alternative permits a square wave drift in the intercept of a simple linear regression model. To develop the approximations for the significance levels leads us to consider boundary-crossing problems of some two-dimensional discrete-time Gaussian fields. By the method which was proposed originally by Woodroofe (1976) and adapted to study maxima of some random fields by Siegmund (1988), some large deviations for the conditional non-linear boundary-crossing probabilities are developed. Some results of Monte Carlo experiments confirm the accuracy of these approximations.
In this paper the class of cyclostationary Gaussian random processes is studied. Basic asymptotics are given for the class of Gaussian processes that are centered and differentiable in mean square. Then, under certain conditions on the non-degeneration of the centered cyclostationary Gaussian process with integrable covariance functions, the Gnedenko-type limit formulais established for and all x > 0.
The well-known Cameron–Martin formula allows us to calculate the mathematical expectation where Ws is a Wiener process. This paper extends this result to the case of piecewise continuous martingales. As a particular case the mathematical expectations of a functional of generalized Ornstein– Uhlenbeck processes and pure jump processes are calculated.
We give explicit expressions for the Slepian model process of non-stationary Gaussian processes following level crossings and local maxima. We also include a detailed analysis of the high-level case.
Under appropriate long-range dependence conditions, it is well known that the joint distribution of the number of exceedances of several high levels is asymptotically compound Poisson. Here we investigate the structure of a cluster of exceedances for stationary sequences satisfying a suitable local dependence condition, under which it is only necessary to get certain limiting probabilities, easy to compute, in order to obtain limiting results for the highest order statistics, exceedance counts and upcrossing counts.
Let γ t and δ t denote the residual life at t and current life at t, respectively, of a renewal process , with the sequence of interarrival times. We prove that, given a function G, under mild conditions, as long as holds for a single positive integer n, then is a Poisson process. On the other hand, for a delayed renewal process with the residual life at t, we find that for some fixed positive integer n, if is independent of t, then is an arbitrarily delayed Poisson process. We also give some corresponding results about characterizing the common distribution function F of the interarrival times to be geometric when F is discrete. Finally, we obtain some characterization results based on the total life or independence of γ t and δ t.
This article provides the theoretical basis of the virtual customer method or positive rare perturbation (RPA) method of sensitivity analysis, and in particular gives a short proof of the light traffic derivative result of Reiman and Simon [5] based on Campbell's formula. As a by-product, we obtain the archetypal H = λG formula associated with a stationary quantity of a queueing system.
By using the alternating projection theorem of J. von Neumann, we obtain explicit formulae for the best linear interpolator and interpolation error of missing values of a stationary process. These are expressed in terms of multistep predictors and autoregressive parameters of the process. The key idea is to approximate the future by a finite-dimensional space.
A unified exposition of random Johnson–Mehl tessellations in d-dimensional Euclidean space is presented. In particular, Johnson-Mehl tessellations generated by time-inhomogeneous Poisson processes and nucleation-exclusion models are studied. The ‘practical' cases d = 2 and d = 3 are discussed in detail. Several new results are established, including first- and second-order moments of various characteristics for both Johnson–Mehl tesselations and sectional Johnson–Mehl tessellations.
This paper considers sets of points from a Poisson process in the plane, chosen to be close together, and their properties. In particular, the perimeter of the convex hull of such a point set is investigated. A number of different models for the selection of such points are considered, including a simple nearest-neighbour model. Extensions to marked processes and applications to modelling animal territories are discussed.
It is well known that most commonly used discrete distributions fail to belong to the domain of maximal attraction for any extreme value distribution. Despite this negative finding, C. W. Anderson showed that for a class of discrete distributions including the negative binomial class, it is possible to asymptotically bound the distribution of the maximum. In this paper we extend Anderson's result to discrete-valued processes satisfying the usual mixing conditions for extreme value results for dependent stationary processes. We apply our result to obtain bounds for the distribution of the maximum based on negative binomial autoregressive processes introduced by E. McKenzie and Al-Osh and Alzaid. A simulation study illustrates the bounds for small sample sizes.