To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study a finite-fuel two-dimensional degenerate singular stochastic control problem under regime switching motivated by the optimal irreversible extraction problem of an exhaustible commodity. A company extracts a natural resource from a reserve with finite capacity and sells it in the market at a spot price that evolves according to a Brownian motion with volatility modulated by a two-state Markov chain. In this setting, the company aims at finding the extraction rule that maximizes its expected discounted cash flow, net of the costs of extraction and maintenance of the reserve. We provide expressions for both the value function and the optimal control. On the one hand, if the running cost for the maintenance of the reserve is a convex function of the reserve level, the optimal extraction rule prescribes a Skorokhod reflection of the (optimally) controlled state process at a certain state and price-dependent threshold. On the other hand, in the presence of a concave running cost function, it is optimal to instantaneously deplete the reserve at the time at which the commodity's price exceeds an endogenously determined critical level. In both cases, the threshold triggering the optimal control is given in terms of the optimal stopping boundary of an auxiliary family of perpetual optimal selling problems with regime switching.
Motivated by a common mathematical finance topic, we discuss the reciprocal of the exit time from a cone of planar Brownian motion which also corresponds to the exponential functional of Brownian motion in the framework of planar Brownian motion. We prove a conjecture of Vakeroudis and Yor (2012) concerning infinite divisibility properties of this random variable and present a novel simple proof of the result of DeBlassie (1987), (1988) concerning the asymptotic behavior of the distribution of the Bessel clock appearing in the skew-product representation of planar Brownian motion, as t→∞. We use the results of the windings approach in order to obtain results for quantities associated to the pricing of Asian options.
We consider positive zero-sum stochastic games with countable state and action spaces. For each player, we provide a characterization of those strategies that are optimal in every subgame. These characterizations are used to prove two simplification results. We show that if player 2 has an optimal strategy then he/she also has a stationary optimal strategy, and prove the same for player 1 under the assumption that the state space and player 2's action space are finite.
It is known that the space of boundedly finite integer-valued measures on a complete separable metric space becomes a complete separable metric space when endowed with the weak-hash metric. It is also known that convergence under this topology can be characterised in a way that is similar to the weak convergence of totally finite measures. However, the original proofs of these two fundamental results assume that a certain term is monotonic, which is not the case as we show by a counterexample. We clarify these original proofs by addressing the parts that rely on this assumption and finding alternative arguments.
An infinite convergent sum of independent and identically distributed random variables discounted by a multiplicative random walk is called perpetuity, because of a possible actuarial application. We provide three disjoint groups of sufficient conditions which ensure that the right tail of a perpetuity ℙ{X > x} is asymptotic to axce-bx as x → ∞ for some a, b > 0, and c ∈ ℝ. Our results complement those of Denisov and Zwart (2007). As an auxiliary tool we provide criteria for the finiteness of the one-sided exponential moments of perpetuities. We give several examples in which the distributions of perpetuities are explicitly identified.
In this paper we establish a new connection between a class of two-player nonzero-sum games of optimal stopping and certain two-player nonzero-sum games of singular control. We show that whenever a Nash equilibrium in the game of stopping is attained by hitting times at two separate boundaries, then such boundaries also trigger a Nash equilibrium in the game of singular control. Moreover, a differential link between the players' value functions holds across the two games.
In the paper we study the Zakai and Kushner–Stratonovich equations of the nonlinear filtering problem for a non-Gaussian signal-observation system. Moreover, we prove that under some general assumption, the Zakai equation has pathwise uniqueness and uniqueness in joint law, and the Kushner–Stratonovich equation is unique in joint law.
We simultaneously estimate the four parameters of a subcritical Heston process. We do not restrict ourselves to the case where the stochastic volatility process never reaches zero. In order to avoid the use of unmanageable stopping times and a natural but intractable estimator, we use a weighted least-squares estimator. We establish strong consistency and asymptotic normality for this estimator. Numerical simulations are also provided, illustrating the favorable performance of our estimation procedure.
For spectrally negative Lévy risk processes we consider a general version of de Finetti's optimal dividend problem in which the ruin time is replaced with a general drawdown time from the running maximum in its value function. We identify a condition under which a barrier dividend strategy is optimal among all admissible strategies if the underlying process does not belong to a small class of compound Poisson processes with drift, for which the take-the-money-and-run dividend strategy is optimal. It generalizes the previous results on dividend optimization from ruin time based to drawdown time based. The associated drawdown functions are discussed in detail for examples of spectrally negative Lévy processes.
Let X be a jump-diffusion process and X* its running supremum. In this paper we first show that for any t > 0, the law of the pair (X*t, Xt) has a density with respect to the Lebesgue measure. This allows us to show that for any t > 0, the law of the pair formed by the random variable Xt and the running supremum X*t of X at time t can be characterized as a weak solution of a partial differential equation concerning the distribution of the pair (X*t, Xt). Then we obtain an expression of the marginal density of X*t for all t > 0.
In this paper we discuss the Mabinogion urn model introduced by Williams (1991). Therein he describes an optimal control problem where the objective is to maximize the expected final number of objects of one kind in the Mabinogion urn model. Our main contribution is formulae for the expected time to absorption and its asymptotic behaviour in the optimally controlled process. We also present results for the noncontrolled Mabinogion urn process and briefly analyze other strategies that become superior if a certain discount factor is included.
By extending the methods of Peligrad et al. (2014), we establish exact moderate and large deviation asymptotics for linear random fields with independent innovations. These results are useful for studying nonparametric regression with random field errors and strong limit theorems.
We study the tail behaviour of the distribution of the area under the positive excursion of a random walk which has negative drift and light-tailed increments. We determine the asymptotics for local probabilities for the area and prove a local central limit theorem for the duration of the excursion conditioned on the large values of its area.
We study the asymptotic tail behavior of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with exponent -½, where the impact of the boundary is captured by the slowly varying function. Yet, the moving boundary may have a stronger effect when the tail is considered at a time close to the return point of the random walk bridge, leading to a possible phase transition depending on the order of the distance between zero and the moving boundary.
We study a weighted maximal weak-type inequality for Haar multipliers that can be regarded as a dual problem of Muckenhoupt and Wheeden. More precisely, if Tε is the Haar multiplier associated with the sequence ε with values in [−1, 1], and is the r-maximal operator, then for any weight w and any function f on [0, 1) we have
for some constant Cr depending only on r. We also show that the analogous result does not hold if we replace by the dyadic maximal operator Md. The proof rests on the Bellman function method; using this technique we establish related weighted Lp estimates for p close to 1, and then deduce the main result by extrapolation arguments.
The basic jump-telegraph process with exponentially distributed interarrival times deserves interest in various applied fields such as financial modelling and queueing theory. Aiming to propose a more general setting, we analyse such a stochastic process when the interarrival times separating consecutive velocity changes (and jumps) have generalized Mittag-Leffler distributions, and constitute the random times of a fractional alternating Poisson process. By means of renewal theory-based issues we obtain the forward and backward transition densities of the motion in series form, and prove their uniform convergence. Specific attention is then given to the case of jumps with constant size, for which we also obtain the mean of the process. Finally, we investigate the first-passage time of the process through a constant positive boundary, providing its formal distribution and suitable lower bounds.
We consider the Bernoulli bandit problem where one of the arms has win probability α and the others β, with the identity of the α arm specified by initial probabilities. With u = max(α, β), v = min(α, β), call an arm with win probability u a good arm. Whereas it is known that the strategy of always playing the arm with the largest probability of being a good arm maximizes the expected number of wins in the first n games for all n, we conjecture that it also stochastically maximizes the number of wins. That is, we conjecture that this strategy maximizes the probability of at least k wins in the first n games for all k, n. The conjecture is proven when k = 1, and k = n, and when there are only two arms and k = n - 1.
Based on the ratio of two block maxima, we propose a large sample test for the length of memory of a stationary symmetric α-stable discrete parameter random field. We show that the power function converges to 1 as the sample-size increases to ∞ under various classes of alternatives having longer memory in the sense of Samorodnitsky (2004). Ergodic theory of nonsingular ℤd-actions plays a very important role in the design and analysis of our large sample test.
Let ξ = (ξ1, . . ., ξm) be a negatively associated mean-zero random vector with components that obey the bound |ξi| ≤ B, i = 1, . . ., m, and whose sum W = ∑i=1mξi has variance 1. The bound d1(ℒ(W), ℒ(Z)) ≤ 5B - 5.2∑i≠ jσij is obtained, where Z has the standard normal distribution and d1(∙, ∙) is the L1 metric. The result is extended to the multidimensional case with the L1 metric replaced by a smooth functions metric. Applications to second-order stationary random fields with exponential decreasing covariance are also presented.