To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is to establish some limit theorems of delayed averages for countable nonhomogeneous Markov chains. The definition of the generalized C-strong ergodicity and the generalized uniformly C-strong ergodicity for countable nonhomogeneous Markov chains is introduced first. Then a theorem about the generalized C-strong ergodicity and the generalized uniformly C-strong ergodicity for the nonhomogeneous Markov chains is established, and its applications to the information theory are given. Finally, the strong law of large numbers of delayed averages of bivariate functions for countable nonhomogeneous Markov chains is proved.
In this work we deal with extreme value theory in the context of continued fractions using techniques from probability theory, ergodic theory and real analysis. We give an upper bound for the rate of convergence in the Doeblin–Iosifescu asymptotics for the exceedances of digits obtained from the regular continued fraction expansion of a number chosen randomly from $(0,1)$ according to the Gauss measure. As a consequence, we significantly improve the best known upper bound on the rate of convergence of the maxima in this case. We observe that the asymptotics of order statistics and the extremal point process can also be investigated using our methods.
We consider de Finetti’s problem for spectrally one-sided Lévy risk models with control strategies that are absolutely continuous with respect to the Lebesgue measure. Furthermore, we consider the version with a constraint on the time of ruin. To characterize the solution to the aforementioned models, we first solve the optimal dividend problem with a terminal value at ruin and show the optimality of threshold strategies. Next, we introduce the dual Lagrangian problem and show that the complementary slackness conditions are satisfied, characterizing the optimal Lagrange multiplier. Finally, we illustrate our findings with a series of numerical examples.
Consider a random vector $\textbf{U}$ whose distribution function coincides in its upper tail with that of an Archimedean copula. We report the fact that the conditional distribution of $\textbf{U}$, conditional on one of its components, has under a mild condition on the generator function independent upper tails, no matter what the unconditional tail behavior is. This finding is extended to Archimax copulas.
We consider random rectangles in $\mathbb{R}^2$ that are distributed according to a Poisson random measure, i.e. independently and uniformly scattered in the plane. The distributions of the length and the width of the rectangles are heavy tailed with different parameters. We investigate the scaling behaviour of the related random fields as the intensity of the random measure grows to infinity while the mean edge lengths tend to zero. We characterise the arising scaling regimes, identify the limiting random fields, and give statistical properties of these limits.
We introduce variance-optimal semi-static hedging strategies for a given contingent claim. To obtain a tractable formula for the expected squared hedging error and the optimal hedging strategy we use a Fourier approach in a multidimensional factor model. We apply the theory to set up a variance-optimal semi-static hedging strategy for a variance swap in the Heston model, which is affine, in the 3/2 model, which is not, and in a market model including jumps.
Motivated by Avram, Vu and Zhou (2017), Kyprianou and Zhou (2009), Li, Vu and Zhou (2017), Wang and Hu (2012), and Wang and Zhou (2018), we consider in this paper the problem of maximizing the expected accumulated discounted tax payments of an insurance company, whose reserve process (before taxes are deducted) evolves as a spectrally negative Lévy process with the usual exclusion of negative subordinator or deterministic drift. Tax payments are collected according to the very general loss-carry-forward tax system introduced in Kyprianou and Zhou (2009). To achieve a balance between taxation optimization and solvency, we consider an interesting modified objective function by considering the expected accumulated discounted tax payments of the company until the general draw-down time, instead of until the classical ruin time. The optimal tax return function and the optimal tax strategy are derived, and some numerical examples are also provided.
For a multivariate random walk with independent and identically distributed jumps satisfying the Cramér moment condition and having mean vector with at least one negative component, we derive the exact asymptotics of the probability of ever hitting the positive orthant that is being translated to infinity along a fixed vector with positive components. This problem is motivated by and extends results of Avram et al. (2008) on a two-dimensional risk process. Our approach combines the large deviation techniques from a series of papers by Borovkov and Mogulskii from around 2000 with new auxiliary constructions, enabling us to extend their results on hitting remote sets with smooth boundaries to the case of boundaries with a ‘corner’ at the ‘most probable hitting point’. We also discuss how our results can be extended to the case of more general target sets.
This paper is devoted to studying the long-term behaviour of a continuous-time Markov chain that can be interpreted as a pair of linear birth processes which evolve with a competitive interaction; as a special case, they include the famous Lotka–Volterra interaction. Another example of our process is related to urn models with ball removal. We show that, with probability one, the process eventually escapes to infinity by sticking to the boundary in a rather unusual way.
In this paper we introduce the multivariate Brownian semistationary (BSS) process and study the joint asymptotic behaviour of its realised covariation using in-fill asymptotics. First, we present a central limit theorem for general multivariate Gaussian processes with stationary increments, which are not necessarily semimartingales. Then, we show weak laws of large numbers, central limit theorems, and feasible results for BSS processes. An explicit example based on the so-called gamma kernels is also provided.
We consider random walks on the mapping class group that have finite first moment with respect to the word metric, whose support generates a non-elementary subgroup and contains a pseudo-Anosov map whose invariant Teichmüller geodesic is in the principal stratum of quadratic differentials. We show that a Teichmüller geodesic typical with respect to the harmonic measure for such random walks, is recurrent to the thick part of the principal stratum. As a consequence, the vertical foliation of such a random Teichmüller geodesic has no saddle connections.
We consider a branching random walk on a multitype (with Q types of particles), supercritical Galton–Watson tree which satisfies the Kesten–Stigum condition. We assume that the displacements associated with the particles of type Q have regularly varying tails of index $\alpha$, while the other types of particles have lighter tails than the particles of type Q. In this paper we derive the weak limit of the sequence of point processes associated with the positions of the particles in the nth generation. We verify that the limiting point process is a randomly scaled scale-decorated Poisson point process using the tools developed by Bhattacharya, Hazra, and Roy (2018). As a consequence, we obtain the asymptotic distribution of the position of the rightmost particle in the nth generation.
We study the asymptotic distribution of the total claim amount for marked Poisson cluster models. The marks determine the size and other characteristics of the individual claims and potentially influence the arrival rate of future claims. We find sufficient conditions under which the total claim amount satisfies the central limit theorem or, alternatively, tends in distribution to an infinite-variance stable random variable. We discuss several Poisson cluster models in detail, paying special attention to the marked Hawkes process as our key example.
In this paper we study continuous-time two-player zero-sum optimal switching games on a finite horizon. Using the theory of doubly reflected backward stochastic differential equations with interconnected barriers, we show that this game has a value and an equilibrium in the players’ switching controls.
The probability of successfully spending twice the same bitcoins is considered. A double-spending attack consists in issuing two transactions transferring the same bitcoins. The first transaction, from the fraudster to a merchant, is included in a block of the public chain. The second transaction, from the fraudster to himself, is recorded in a block that integrates a private chain, exact copy of the public chain up to substituting the fraudster-to-merchant transaction by the fraudster-to-fraudster transaction. The double-spending hack is completed once the private chain reaches the length of the public chain, in which case it replaces it. The growth of both chains are modelled by two independent counting processes. The probability distribution of the time at which the malicious chain catches up with the honest chain, or, equivalently, the time at which the two counting processes meet each other, is studied. The merchant is supposed to await the discovery of a given number of blocks after the one containing the transaction before delivering the goods. This grants a head start to the honest chain in the race against the dishonest chain.
Let X1, …, Xn be independent random points drawn from an absolutely continuous probability measure with density f in ℝd. Under mild conditions on f, wederive a Poisson limit theorem for the number of large probability nearest-neighbour balls. Denoting by Pn the maximum probability measure of nearest-neighbour balls, this limit theorem implies a Gumbel extreme value distribution for nPn − ln n as n → ∞. Moreover, we derive a tight upper bound on the upper tail of the distribution of nPn − ln n, which does not depend on f.
A new network evolution model is introduced in this paper. The model is based on cooperations of N units. The units are the nodes of the network and the cooperations are indicated by directed links. At each evolution step N units cooperate, which formally means that they form a directed N-star subgraph. At each step either a new unit joins the network and it cooperates with N − 1 old units, or N old units cooperate. During the evolution both preferential attachment and uniform choice are applied. Asymptotic power law distributions are obtained both for in-degrees and for out-degrees.
We introduce and study the notion of sure profits via flash strategies, consisting of a high-frequency limit of buy-and-hold trading strategies. In a fully general setting, without imposing any semimartingale restriction, we prove that there are no sure profits via flash strategies if and only if asset prices do not exhibit predictable jumps. This result relies on the general theory of processes and provides the most general formulation of the well-known fact that, in an arbitrage-free financial market, asset prices (including dividends) should not exhibit jumps of a predictable direction or magnitude at predictable times. We furthermore show that any price process is always right-continuous in the absence of sure profits. Our results are robust under small transaction costs and imply that, under minimal assumptions, price changes occurring at scheduled dates should only be due to unanticipated information releases.
We investigate the supports of extremal martingale measures with prespecified marginals in a two-period setting. First, we establish in full generality the equivalence between the extremality of a given measure Q and the denseness in $L^1(Q)$ of a suitable linear subspace, which can be seen in a financial context as the set of all semistatic trading strategies. Moreover, when the supports of both marginals are countable, we focus on the slightly stronger notion of weak exact predictable representation property (WEP) and provide two combinatorial sufficient conditions, called the ‘2-link property’ and ‘full erasability’, on how the points in the supports are linked to each other for granting extremality. When the support of the first marginal is a finite set, we give a necessary and sufficient condition for the WEP to hold in terms of the new concepts of 2-net and deadlock. Finally, we study the relation between cycles and extremality.