To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
$\mathbb{Z}^{d}$-extensions of probability-preserving dynamical systems are themselves dynamical systems preserving an infinite measure, and generalize random walks. Using the method of moments, we prove a generalized central limit theorem for additive functionals of the extension of integral zero, under spectral assumptions. As a corollary, we get the fact that Green–Kubo’s formula is invariant under induction. This allows us to relate the hitting probability of sites with the symmetrized potential kernel, giving an alternative proof and generalizing a theorem of Spitzer. Finally, this relation is used to improve, in turn, the assumptions of the generalized central limit theorem. Applications to Lorentz gases in finite horizon and to the geodesic flow on Abelian covers of compact manifolds of negative curvature are discussed.
The interpretation of the ‘standard’ Palm version of a stationary random measure ξ is that it behaves like ξ conditioned on containing the origin in its mass. The interpretation of the ‘modified’ Palm version is that it behaves like ξ seen from a typical location in its mass. In this paper we shall focus on the modified Palm version, comparing it with the standard version in the transparent case of mixed biased coin tosses, and then establishing a limit theorem that motivates the above interpretation in the case of random measures on locally compact second countable Abelian groups possessing Følner averaging sets.
In this paper we present a set of results relating to the occupation time α(t) of a process X(·). The first set of results concerns exact characterizations of α(t), e.g. in terms of its transform up to an exponentially distributed epoch. In addition, we establish a central limit theorem (entailing that a centered and normalized version of α(t)∕t converges to a zero-mean normal random variable as t→∞) and the tail asymptotics of ℙ(α(t)∕t≥q). We apply our findings to spectrally positive Lévy processes reflected at the infimum and establish various new occupation time results for the corresponding model.
Bizarrely shaped voting districts are frequently lambasted as likely instances of gerrymandering. In order to systematically identify such instances, researchers have devised several tests for so-called geographic compactness (i.e. shape niceness). We demonstrate that under certain conditions, a party can gerrymander a competitive state into geographically compact districts to win an average of over 70% of the districts. Our results suggest that geometric features alone may fail to adequately combat partisan gerrymandering.
In this paper we give a new flavour to what Peter Jagers and his co-authors call `the path to extinction'. In a neutral population of constant size N, assume that each individual at time 0 carries a distinct type, or allele. Consider the joint dynamics of these N alleles, for example the dynamics of their respective frequencies and more plainly the nonincreasing process counting the number of alleles remaining by time t. Call this process the extinction process. We show that in the Moran model, the extinction process is distributed as the process counting (in backward time) the number of common ancestors to the whole population, also known as the block counting process of the N-Kingman coalescent. Stimulated by this result, we investigate whether it extends (i) to an identity between the frequencies of blocks in the Kingman coalescent and the frequencies of alleles in the extinction process, both evaluated at jump times, and (ii) to the general case of Λ-Fleming‒Viot processes.
We extend the work of Antunović et al. (2016) on competing types in preferential attachment models to include cases where the types have different fitnesses, which may be either multiplicative or additive. We show that, depending on the values of the parameters of the models, there are different possible limiting behaviours depending on the zeros of a certain function. In particular, we show the existence of choices of the parameters where one type is favoured both by having higher fitness and by the type of attachment mechanism, but the other type has a positive probability of dominating the network in the limit.
Let Xn(k) be the number of vertices at level k in a random recursive tree with n+1 vertices. We are interested in the asymptotic behavior of Xn(k) for intermediate levels k=kn satisfying kn→∞ and kn=o(logn) as n→∞. In particular, we prove weak convergence of finite-dimensional distributions for the process (Xn ([knu]))u>0, properly normalized and centered, as n→∞. The limit is a centered Gaussian process with covariance (u,v)↦(u+v)−1. One-dimensional distributional convergence of Xn(kn), properly normalized and centered, was obtained with the help of analytic tools by Fuchs et al. (2006). In contrast, our proofs, which are probabilistic in nature, exploit a connection of our model with certain Crump–Mode–Jagers branching processes.
Let Sn,n≥1, be the successive sums of the payoffs in the classical St. Petersburg game. The celebrated Feller weak law states that Sn∕(nlog2n)→ℙ1 as n→∞. In this paper we review some earlier results of ours and extend some of them as we consider an asymmetric St. Petersburg game, in which the distribution of the payoff X is given by ℙ(X=srk-1)=pqk-1,k=1,2,…, where p+q=1 and s,r>0. Two main results are extensions of the Feller weak law and the convergence in distribution theorem of Martin-Löf (1985). Moreover, it is well known that almost-sure convergence fails, though Csörgő and Simons (1996) showed that almost-sure convergence holds for trimmed sums and also for sums trimmed by an arbitrary fixed number of maxima. In view of the discreteness of the distribution we focus on `max-trimmed sums', that is, on the sums trimmed by the random number of observations that are equal to the largest one, and prove limit theorems for simply trimmed sums, for max-trimmed sums, as well as for the `total maximum'. Analogues with respect to the random number of summands equal to the minimum are also obtained and, finally, for joint trimming.
Introduced recently in mathematical finance by Bayer et al. (2016), the rough Bergomi model has proved particularly efficient to calibrate option markets. We investigate some of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-noise version of the model. The exponential function (continuous but superlinear) as well as the drift appearing in the volatility process fall beyond the scope of existing results, and a dedicated analysis is needed.
De Finetti’s optimal dividend problem has recently been extended to the case when dividend payments can be made only at Poisson arrival times. In this paper we consider the version with bail-outs where the surplus must be nonnegative uniformly in time. For a general spectrally negative Lévy model, we show the optimality of a Parisian-classical reflection strategy that pays the excess above a given barrier at each Poisson arrival time and also reflects from below at 0 in the classical sense.
We define nearest-neighbour point processes on graphs with Euclidean edges and linear networks. They can be seen as analogues of renewal processes on the real line. We show that the Delaunay neighbourhood relation on a tree satisfies the Baddeley‒Møller consistency conditions and provide a characterisation of Markov functions with respect to this relation. We show that a modified relation defined in terms of the local geometry of the graph satisfies the consistency conditions for all graphs with Euclidean edges that do not contain triangles.
In this paper we consider a new type of urn scheme, where the selection probabilities are proportional to a weight function, which is linear but decreasing in the proportion of existing colours. We refer to it as the de-preferential urn scheme. We establish the almost-sure limit of the random configuration for any balanced replacement matrix R. In particular, we show that the limiting configuration is uniform on the set of colours if and only if R is a doubly stochastic matrix. We further establish the almost-sure limit of the vector of colour counts and prove central limit theorems for the random configuration as well as for the colour counts.
We introduce and study the class of branching-stable point measures, which can be seen as an analog of stable random variables when the branching mechanism for point measures replaces the usual addition. In contrast with the classical theory of stable (Lévy) processes, there exists a rich family of branching-stable point measures with a negative scaling exponent, which can be described as certain Crump‒Mode‒Jagers branching processes. We investigate the asymptotic behavior of their cumulative distribution functions, that is, the number of atoms in (-∞, x] as x→∞, and further depict the genealogical lineage of typical atoms. For both results, we rely crucially on the work of Biggins (1977), (1992).
Brown‒Resnick processes are max-stable processes that are associated to Gaussian processes. Their simulation is often based on the corresponding spectral representation which is not unique. We study to what extent simulation accuracy and efficiency can be improved by minimizing the maximal variance of the underlying Gaussian process. Such a minimization is a difficult mathematical problem that also depends on the geometry of the simulation domain. We extend Matheron's (1974) seminal contribution in two directions: (i) making his description of a minimal maximal variance explicit for convex variograms on symmetric domains, and (ii) proving that the same strategy also reduces the maximal variance for a huge class of nonconvex variograms representable through a Bernstein function. A simulation study confirms that our noncostly modification can lead to substantial improvements among Gaussian representations. We also compare it with three other established algorithms.
In this paper we study the Assouad dimension of graphs of certain Lévy processes and functions defined by stochastic integrals. We do this by introducing a convenient condition which guarantees a graph to have full Assouad dimension and then show that graphs of our studied processes satisfy this condition.
Vibration energy harvesting aims to harness the energy of ambient random vibrations for power generation, particularly in small-scale devices. Typically, stochastic excitation driving the harvester is modelled as a Brownian process and the dynamics are studied in the equilibrium state. However, non-Brownian excitations are of interest, particularly in the nonequilibrium regime of the dynamics. In this work we study the nonequilibrium dynamics of a generic piezoelectric harvester driven by Brownian as well as (non-Brownian) Lévy flight excitation, both in the linear and the Duffing regimes. Both the monostable and the bistable cases of the Duffing regime are studied. The first set of results demonstrate that Lévy flight excitation results in higher expectation values of harvested power. In particular, it is shown that increasing the noise intensity leads to a significant increase in power output. It is also shown that a linearly coupled array of nonlinear harvesters yields improved power output for tailored values of coupling coefficients. The second set of results show that Lévy flight excitation fundamentally alters the bifurcation characteristics of the dynamics. Together, the results underscore the importance of non-Brownian excitation characterised by Lévy flight in vibration energy harvesting, both from a theoretical viewpoint and from the perspective of practical applications.
Given a one-dimensional downwards transient diffusion process $X$, we consider a random time $\unicode[STIX]{x1D70C}$, the last exit time when $X$ exits a certain level $\ell$, and detect the optimal stopping time for it. In particular, for this random time $\unicode[STIX]{x1D70C}$, we solve the optimisation problem $\inf _{\unicode[STIX]{x1D70F}}\mathbb{E}[\unicode[STIX]{x1D706}(\unicode[STIX]{x1D70F}-\unicode[STIX]{x1D70C})_{+}+(1-\unicode[STIX]{x1D706})(\unicode[STIX]{x1D70C}-\unicode[STIX]{x1D70F})_{+}]$ over all stopping times $\unicode[STIX]{x1D70F}$. We show that the process should stop optimally when it runs below some fixed level $\unicode[STIX]{x1D705}_{\ell }$ for the first time, where $\unicode[STIX]{x1D705}_{\ell }$ is the unique solution in the interval $(0,\unicode[STIX]{x1D706}\ell )$ of an explicitly defined equation.
We study the Furstenberg-entropy realization problem for stationary actions. It is shown that for finitely supported probability measures on free groups, any a priori possible entropy value can be realized as the entropy of an ergodic stationary action. This generalizes results of Bowen. The stationary actions we construct arise via invariant random subgroups (IRSs), based on ideas of Bowen and Kaimanovich. We provide a general framework for constructing a continuum of ergodic IRSs for a discrete group under some algebraic conditions, which gives a continuum of entropy values. Our tools apply, for example, for certain extensions of the group of finitely supported permutations and lamplighter groups, hence establishing full realization results for these groups. For the free group, we construct the IRSs via a geometric construction of subgroups, by describing their Schreier graphs. The analysis of the entropy of these spaces is obtained by studying the random walk on the appropriate Schreier graphs.