We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we derive the distribution of the total downtime of a repairable system during a given time interval. We allow dependence of the failure time and the repair time. The results are presented in the form of Laplace transforms which can be inverted numerically. We also discuss asymptotic properties of the total downtime.
We discuss long-memory properties and the partial sums process of the AR(1) process {Xt, t ∈ 𝕫} with random coefficient {at, t ∈ 𝕫} taking independent values Aj ∈ [0,1] on consecutive intervals of a stationary renewal process with a power-law interrenewal distribution. In the case when the distribution of generic Aj has either an atom at the point a=1 or a beta-type probability density in a neighborhood of a=1, we show that the covariance function of {Xt} decays hyperbolically with exponent between 0 and 1, and that a suitably normalized partial sums process of {Xt} weakly converges to a stable Lévy process.
Shot noise Cox processes constitute a large class of Cox and Poisson cluster processes in ℝd, including Neyman-Scott, Poisson-gamma and shot noise G Cox processes. It is demonstrated that, due to the structure of such models, a number of useful and general results can easily be established. The focus is on the probabilistic aspects with a view to statistical applications, particularly results for summary statistics, reduced Palm distributions, simulation with or without edge effects, conditional simulation of the intensity function and local and spatial Markov properties.
We study the existence of moments and the tail behavior of the densities of storage processes. We give sufficient conditions for existence and nonexistence of moments using the integrability conditions of submultiplicative functions with respect to Lévy measures. We then study the asymptotical behavior of the tails of these processes using the concave or convex envelope of the release rate function.
In this paper we consider a queue fed by a large number of independent continuous-time Gaussian processes with stationary increments. After scaling the buffer exceedance threshold and the (constant) service capacity by the number of sources, we present asymptotically exact results for the probability that the buffer threshold is exceeded. We consider both the stationary overflow probability and the (transient) probability of overflow at a finite time horizon. We give detailed results for the practically important cases in which the inputs are fractional Brownian motion processes or integrated Gaussian processes.
Stochastic monotonicity properties for various classes of queueing networks have been established in the literature mainly with the use of coupling constructions. Miyazawa and Taylor (1997) introduced a class of batch-arrival, batch-service and assemble-transfer queueing networks which can be thought of as generalized Jackson networks with batch movements. We study conditions for stochastic domination within this class of networks. The proofs are based on a certain characterization of the stochastic order for continuous-time Markov chains, written in terms of their associated intensity matrices.
In this paper we derive conditions on the internal wear process under which the resulting time to failure model will be of the simple collapsible form when the usage accumulation history is available. We suppose that failure occurs when internal wear crosses a certain threshold or a traumatic event causes the item to fail. We model the infinitesimal increment in internal wear as a function of time, accumulated internal wear, and usage history, and we derive conditions on this function to get a collapsible model for the distribution of time to failure given the usage history. We reach the conclusion that collapsible models form the subset of accelerated failure time models with time-varying covariates for which the time transformation function satisfies certain simple properties.
The aim of this paper is to define the entropy of a finite semi-Markov process. We define the entropy of the finite distributions of the process, and obtain explicitly its entropy rate by extending the Shannon–McMillan–Breiman theorem to this class of nonstationary continuous-time processes. The particular cases of pure jump Markov processes and renewal processes are considered. The relative entropy rate between two semi-Markov processes is also defined.
The formation of patterns from letters of a finite alphabet is considered. The strings of letters are generated by general discrete- and continuous-time models which embrace as particular cases all models considered in the literature. The letters of the alphabet are identified by the states of either discrete- or continuous-time semi-Markov processes. A new and unifying method is introduced for evaluation of the generating functions of both the intersite distance between occurrences of an arbitrary, but fixed, pattern and the waiting time until the first occurrence of that pattern. Our method also covers in a unified way relevant and important joint generating functions. Furthermore, our results lead to an easy and efficient implementation of the relevant evaluations.
We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic flows are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for achieving service differentiation in integrated networks. We derive the asymptotic workload behaviour of the light-tailed traffic flow under the assumption that its GPS weight is larger than its traffic intensity. The GPS mechanism ensures that the workload is bounded above by that in an isolated system with the light-tailed flow served in isolation at a constant rate equal to its GPS weight. We show that the workload distribution is, in fact, asymptotically equivalent to that in the isolated system, multiplied by a certain prefactor, which accounts for the interaction with the heavy-tailed flow. Specifically, the prefactor represents the probability that the heavy-tailed flow is backlogged long enough for the light-tailed flow to reach overflow. The results provide crucial qualitative insight in the typical overflow scenario.
We determine the exact large-buffer asymptotics for a mixture of light-tailed and heavy-tailed input flows. Earlier studies have found a ‘reduced-load equivalence’ in situations where the peak rate of the heavy-tailed flows plus the mean rate of the light-tailed flows is larger than the service rate. In that case, the workload is asymptotically equivalent to that in a reduced system, which consists of a certain ‘dominant’ subset of the heavy-tailed flows, with the service rate reduced by the mean rate of all other flows. In the present paper, we focus on the opposite case where the peak rate of the heavy-tailed flows plus the mean rate of the light-tailed flows is smaller than the service rate. Under mild assumptions, we prove that the workload distribution is asymptotically equivalent to that in a somewhat ‘dual’ reduced system, multiplied by a certain prefactor. The reduced system now consists of only the light-tailed flows, with the service rate reduced by the peak rate of the heavy-tailed flows. The prefactor represents the probability that the heavy-tailed flows have sent at their peak rate for more than a certain amount of time, which may be interpreted as the ‘time to overflow’ for the light-tailed flows in the reduced system. The results provide crucial insight into the typical overflow scenario.
We show that the second lowest invariant measure of the contact process, introduced by Salzano and Schonmann (1997), is stochastically lower that any invariant measure which puts no mass on the empty configuration.
A continuum growth model is introduced. The state at time t, St, is a subset ofℝd and consists of a connected union of randomly sized Euclidean balls, which emerge from outbursts at their centre points. An outburst occurs somewhere in St after an exponentially distributed time with expected value|St|-1 and the location of the outburst is uniformly distributed over St. The main result is that, if the distribution of the radii of the outburst balls has bounded support, then St grows linearly and St/t has a nonrandom shape as t → ∞. Due to rotational invariance the asymptotic shape must be a Euclidean ball.
In this paper, we consider a single-server queue with stationary input, where each job joining the queue has an associated deadline. The deadline is a time constraint on job sojourn time and may be finite or infinite. If the job does not complete service before its deadline expires, it abandons the queue and the partial service it may have received up to that point is wasted. When the queue operates under a first-come-first served discipline, we establish conditions under which the actual workload process—that is, the work the server eventually processes—is unstable, weakly stable, and strongly stable. An interesting phenomenon observed is that in a nontrivial portion of the parameter space, the queue is weakly stable, but not strongly stable. We also indicate how our results apply to other nonidling service disciplines. We finally extend the results for a single node to acyclic (feed-forward) networks of queues with either per-queue or network-wide deadlines.
In this paper, we propose a customer-arrival-based insurance risk model, in which customers' potential claims are described as independent and identically distributed heavy-tailed random variables and premiums are the same for each policy. We obtain some precise large deviation results for the prospective-loss process under a mild assumption on the random index (in our case, the customer-arrival process), which is much weaker than that in the literature.
Populations of specific components are often heterogeneous and consist of a small number of different sub-populations. For example there are often two groups: defective components with shorter lifetimes and standard components with longer lifetimes. Another heterogeneous population results when components produced by two different manufacturing lines are combined. In either case a mixture results. The resulting population can be described using the statistical concept of a mixture. It is a well-known result that a mixture of distributions with decreasing failure rates has a decreasing failure rate. However, little is known about the monotonicity of a mixture when the various subpopulations have failure rates which are not necessarily decreasing. In this paper we study and attempt to determine the shape as well as the overall behavior of the failure rate of a mixture from two subpopulations each of which has increasing linear failure rate.
We consider polling systems with mixtures of exhaustive and gated service in which the server visits the queues periodically according to a general polling table. We derive exact expressions for the steady-state delay incurred at each of the queues under standard heavy-traffic scalings. The expressions require the solution of a set of only M—N linear equations, where M is the length of the polling table and N is the number of queues, but are otherwise explicit. The equations can even be expressed in closed form for several routeing schemes commonly used in practice, such as the star and elevator visit order, in a general parameter setting. The results reveal a number of asymptotic properties of the behavior of polling systems. In addition, the results lead to simple and fast approximations for the distributions and the moments of the delay in stable polling systems with periodic server routeing. Numerical results demonstrate that the approximations are highly accurate for medium and heavily loaded systems.
We consider the policy in a finite dam in which the input of water is formed by a compound Poisson process and the rate of water release is changed instantaneously from a to M and from M to a (M > a) at the moments when the level of water exceeds λ and downcrosses τ (λ > τ) respectively. After assigning costs to the changes of release rate, a reward to each unit of output, and a cost related to the level of water in the reservoir, we determine the long-run average cost per unit time.
Block, Savits and Singh previously presented a preservation result for bathtub-shaped functions. In this paper, we strengthen and extend their results to a class of functions which allow for more than one change of monotonicity. Various applications are also considered.
For multiple-server finite-buffer systems with batch Poisson arrivals, we explore how the distribution of the number of losses during a busy period changes with the buffer size and the initial number of customers. We show that when the arrival rate equals the maximal service rate (ρ = 1), as the buffer size increases the number of losses in a busy period increases in the convex sense, and when ρ > 1, as the buffer size increases the number of busy period losses increases in the increasing convex sense. Also, the number of busy period losses is stochastically increasing in the initial number of customers. A consequence of our results is that, when ρ = 1, the mean number of busy period losses equals the mean batch size of arrivals regardless of the buffer size. We show that this invariance does not extend to general arrival processes.