To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a fluid queue with downward jumps, where the fluid flow rate and the downward jumps are controlled by a background Markov chain with a finite state space. We show that the stationary distribution of a buffer content has a matrix exponential form, and identify the exponent matrix. We derive these results using time-reversed arguments and the background state distribution at the hitting time concerning the corresponding fluid flow with upward jumps. This distribution was recently studied for a fluid queue with upward jumps under a stability condition. We give an alternative proof for this result using the rate conservation law. This proof not only simplifies the proof, but also explains an underlying Markov structure and enables us to study more complex cases such that the fluid flow has jumps subject to a nondecreasing Lévy process, a Brownian component, and countably many background states.
In this paper we find conditions under which the epoch times of two nonhomogeneous Poisson processes are ordered in the multivariate dispersive order. Some consequences and examples of this result are given. These results extend a recent result of Brown and Shanthikumar (1998).
We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times of the machine depend on how many times it has failed and was subjected to repairs. Secondly, when the machine experiences a nonrepairable failure, it is replaced by another machine. The replacement machine may be new or a refurbished one. After the Nth failure, the machine is automatically replaced with a new one. We present a detailed analysis of special cases of this system, and we obtain the stationary distribution of the system and the optimal time for replacing the machine with a new one.
We consider a discrete-time queueing system with the discrete autoregressive process of order 1 (DAR(1)) as an input process and obtain the actual waiting time distribution and the virtual waiting time distribution. As shown in the analysis, our approach provides a natural numerical algorithm to compute the waiting time distributions, based on the theory of the GI/G/1 queue, and consequently we can easily investigate the effect of the parameters of the DAR(1) on the waiting time distributions. We also derive a simple approximation of the asymptotic decay rate of the tail probabilities for the virtual waiting time in the heavy traffic case.
We generalize Banach's matchbox problem: demands of random size are made on one of two containers, both initially with content t, where the container is selected at random in the successive steps. Let Zt be the content of the other container at the moment when the selected container is found to be insufficient. We obtain the asymptotic distribution of Zt as t → ∞ under quite general conditions. The case of exponentially distributed demands is considered in more detail.
We extend classical renewal theorems to the weighted case. A hierarchical chain of successive sharpenings of asymptotic statements on the weighted renewal functions is obtained by imposing stronger conditions on the weighting coefficients.
We study the long-run behaviour of interactive Markov chains on infinite product spaces. The behaviour at a single site is influenced by the local situation in some neighbourhood and by a random signal about the average situation throughout the whole system. The asymptotic behaviour of such Markov chains is analyzed on the microscopic level and on the macroscopic level of empirical fields. We give sufficient conditions for convergence on the macroscopic level. Combining a convergence result from the theory of random systems with complete connections with a perturbation of the Dobrushin-Vasserstein contraction technique, we show that macroscopic convergence implies that the underlying microscopic process has local asymptotic loss of memory.
We introduce Galton-Watson-style branching processes in random environments which are deteriorating rather than stationary or independent. Some primary results on process growth and extinction probability are shown, and two simple examples are given.
We present a recursive method of computation for the probability that at most k customers were served during the busy period of an M/G/1 retrial queue.
An explicit convolution representation for the equilibrium residual lifetime distribution of compound zero-modified geometric distributions is derived. Second-order reliability properties are seen to be essentially preserved under geometric compounding, and complement results of Brown (1990) and Cai and Kalashnikov (2000). The convolution representation is then extended to the nth-order equilibrium distribution. This higher-order convolution representation is used to evaluate the stop-loss premium and higher stop-loss moments of the compound zero-modified geometric distribution, as well as the Laplace transform of the kth moment of the time of ruin in the classical risk model.
In this paper, we study ruin probabilities in two generalized risk models. The effects of timing of payments and interest on the ruin probabilities in the models are considered. The rates of interest are assumed to have a dependent autoregressive structure. Generalized Lundberg inequalities for the ruin probabilities are derived by a renewal recursive technique. An illustrative application is given to the compound binomial risk process.
Suppose that there is a sequence of programs or jobs that are scheduled to be executed one after another on a computer. A program may terminate its execution because of the failure of the computer, which will obliterate all work the computer has accomplished, and the program has to be run all over again. Hence, it is common to save the work just completed after the computer has been working for a certain amount of time, say y units. It is assumed that it takes a certain time to perform a save. During the saving process, the computer is still subject to random failure. No matter when the computer failure occurs, it is assumed that the computer will be repaired completely and the repair time will be negligible. If saving is successful, then the computer will continue working from the end of the last saved work; if the computer fails during the saving process, then only unsaved work needs to be repeated. This paper discusses the optimal work size y under which the long-run average amount of work saved is maximized. In particular, the case of an exponential failure time distribution is studied in detail. The properties of the optimal age-replacement policy are also derived when the work size y is fixed.
What is the effect of punching holes at random in an infinite tensed membrane? When will the membrane still support tension? This problem was introduced by Connelly in connection with applications of rigidity theory to natural sciences. The answer clearly depends on the shapes and the distribution of the holes. We briefly outline a mathematical theory of tension based on graph rigidity theory and introduce a probabilistic model for this problem. We show that if the centers of the holes are distributed in ℝ2 according to a Poisson law with density λ > 0, and the shapes are i.i.d. and independent of the locations of their centers, the tension is lost on all of ℝ2 for any λ. After introducing a certain step-by-step dynamic for the loss of tension, we establish the existence of a nonrandom N = N(λ) such that N steps are almost surely enough for the loss of tension. Also, we prove that N(λ) > 2 almost surely for sufficiently small λ. The processes described in the paper are related to bootstrap and rigidity percolation.
In this paper, we study a fluid model with partial message discarding and early message discarding, in which a finite buffer receives data (or information) from N independent on/off sources. All data generated by a source during one of its on periods is considered as a complete message. Our discarding scheme consists of two parts: (i) whenever some data belonging to a message has been lost due to overflow of the buffer, the remaining portion of this message will be discarded, and (ii) as long as the buffer content surpasses a certain threshold value at the instant an on period starts, all information generated during this on period will be discarded. By applying level-crossing techniques, we derive the equations for determining the system's stationary distribution. Further, two important performance measures, the probability of messages being transmitted successfully and the goodput of the system, are obtained. Numerical results are provided to demonstrate the effect of control parameters on the performance of the system.
We consider a network of dams to which the external input is a multivariate Markov additive process. For each state of the Markov chain modulating the Markov additive process, the release rates are linear (constant multiple of the content level). Each unit of material processed by a given station is then divided into fixed proportions each of which is routed to another station or leaves the system. For each state of the modulating process, this routeing is determined by some substochastic matrix. We identify simple conditions for stability and show how to compute transient and stationary characteristics of such networks.
We consider an infinite capacity buffer where the incoming fluid traffic belongs to K different types modulated by K independent Markovian on-off processes. The kth input process is described by three parameters: (λk, μk, rk), where 1/λk is the mean off time, 1/μk is the mean on time, and rk is the constant peak rate during the on time. The buffer empties the fluid at rate c according to a first come first served (FCFS) discipline. The output process of type k fluid is neither Markovian, nor on-off. We approximate it by an on-off process by defining the process to be off if no fluid of type k is leaving the buffer, and on otherwise. We compute the mean on time τkon and mean off time τkoff. We approximate the peak output rate by a constant rko so as to conserve the fluid. We approximate the output process by the three parameters (λko, μko, rko), where λko = 1/τkoff, and μko = 1/τkon. In this paper we derive methods of computing τkon, τkoff and rko for k = 1, 2,…, K. They are based on the results for the computation of expected reward in a fluid queueing system during a first passage time. We illustrate the methodology by a numerical example. In the last section we conduct a similar output analysis for a standard M/G/1 queue with K types of customers arriving according to independent Poisson processes and requiring independent generally distributed service times, and following a FCFS service discipline. For this case we are able to get analytical results.
The following problem in risk theory is considered. An insurance company, endowed with an initial capital a ≥ 0, receives premiums and pays out claims that occur according to a renewal process {N(t), t ≥ 0}. The times between consecutive claims are i.i.d. The sequence of successive claims is a sequence of i.i.d. random variables. The capital of the company is invested at interest rate α ∊ [0,1], claims increase at rate β ∊ [0,1]. The aim is to find the stopping time that maximizes the capital of the company. A dynamic programming method is used to find the optimal stopping time and to specify the expected capital at that time.
We consider an infinite-capacity buffer receiving fluid at a rate depending on the state of an M/M/1 queue. We obtain a new analytic expression for the joint stationary distribution of the buffer level and the state of the M/M/1 queue. This expression is obtained by the use of generating functions which are explicitly inverted. The case of a finite capacity fluid queue is also considered.
In this paper, we investigate k-out-of-n systems with independent and identically distributed components. Some characterizations of the IFR(2), DMRL, NBU(2) and NBUC classes of life distributions are obtained in terms of the monotonicity of the residual life given that the (n-k)th failure has occurred at time t ≥ 0. These results complement those reported by Belzunce, Franco and Ruiz (1999). Similar conclusions based on the residual life of a parallel system conditioned by the (n-k)th failure time are presented as well.
For the M/G/c loss system, it is well known that Erlang's loss probability is convex in the number of servers. We extend this result firstly to renewal arrivals and exponential service, then to regenerative arrivals and exponential service, and finally to an arbitrary arrival process with i.i.d. service times that are independent of the arrival process.