To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Zd. The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.
A new procedure that generates the transient solution of the first moment of the state of a Markovian queueing network with state-dependent arrivals, services, and routeing is developed. The procedure involves defining a partial differential equation that relates an approximate multivariate cumulant generating function to the intensity functions of the network. The partial differential equation then yields a set of ordinary differential equations which are numerically solved to obtain the first moment.
Connections between classification and lumpability in the stochastic Hopfield model (SHM) are explored and developed. A simplification of the SHM's complexity based upon its inherent lumpability is derived. Contributions resulting from this reduction in complexity include: (i) computationally feasible classification time computations; (ii) a development of techniques for enumerating the stationary distribution of the SHM's energy function; and (iii) a characterization of the set of possible absorbing states of the Markov chain associated with the zero temperature SHM.
We prove that for a class of anisotropic long-range percolation models for which connection probabilities p<x,z> satisfy some regularity properties, and such that ∑z∈Z2p<x,z> = ∞, percolation still will occur even if we truncate all edges whose length exceeds some constant (which in this case depends on the family of connectivity probabilities {p<x,z>). We also present an example of dependent long-range percolation model for which this is not true.
We consider a continuous-time Markov additive process (Jt,St) with (Jt) an irreducible Markov chain on E = {1,…,s}; it is known that (St/t) satisfies the large deviations principle as t → ∞. In this paper we present a variational formula H for the rate function κ∗ and, in some sense, we have a composition of two large deviations principles. Moreover, under suitable hypotheses, we can consider two other continuous-time Markov additive processes derived from (Jt,St): the averaged parameters model (Jt,St(A)) and the fluid model (Jt,St(F)). Then some results of convergence are presented and the variational formula H can be employed to show that, in some sense, the convergences for (Jt,St(A)) and (Jt,St(F)) are faster than the corresponding convergences for (Jt,St).
Scherk's graph is a subgraph of the three-dimensional lattice. It was shown by Markvorsen, McGuinness and Thomassen (1992) that Scherk's graph is transient. Consider the Bernoulli bond percolation in Scherk's graph. We prove that the infinite cluster is transient for p > ½ and is recurrent for p < ½. This implies the well-known result of Grimmett, Kesten and Zhang (1993) on the transience of the infinite cluster of the Bernoulli bond percolation in the three-dimensional lattice for p > ½. On the other hand, Scherk's graph exhibits a new dichotomy in the supercritical region.
For most repairable systems, the number N(t) of failed components at time t appears to be a good quality parameter, so it is critical to study this random function. Here the components are assumed to be independent and both their lifetime and their repair time are exponentially distributed. Moreover, the system is considered new at time 0. Our aim is to compare the random variable N(t) with N(∞), especially in terms of total variation distance. This analysis is used to prove a cut-off phenomenon in the same way as Ycart (1999) but without the assumption of identical components.
We give a general construction of sequential games among multiple players, as well as a construction of the composition of sequential games. We obtain new properties of the optimal class of win-by-k games, including closure under composition and independence between the winner of the game and the number of points played. We obtain new results on the asymptotic efficiency of the n-point, win-by-k games.
In this paper we provide new results about stochastic comparisons of the excess lifetime at different times of a renewal process when the interarrival times belong to several ageing classes. We also provide a preservation result for the new better than used in the Laplace transform order ageing class for series systems.
We consider I fluid queues in parallel. Each fluid queue has a deterministic inflow with a constant rate. At a random instant subject to a Poisson process, random amounts of fluids are simultaneously reduced. The requested amounts for the reduction are subject to a general I-dimensional distribution. The queues with inventories that are smaller than the requests are emptied. Stochastic upper bounds are considered for the stationary distribution of the joint buffer contents. Our major interest is in finding exponential product-form bounds, which turn out to have the appropriate decay rates with respect to certain linear combinations of buffer contents.
The paper examines multivariate delayed marked renewal processes, of which one component is formed by a delayed compound Poisson process observed at epochs of some point process. In addition, the values of these observations (and other components) are watched when crossing their respective thresholds and the value of the original Poisson process at any moment of time, past the first passage time, is the objective of this investigation. The results (which are imperative for classes of semiregenerative processes) are given in closed analytical forms and illustrated on various stochastic models.
We analyse a non-Markovian generalization of the telegrapher's random process. It consists of a stochastic process describing a motion on the real line characterized by two alternating velocities with opposite directions, where the random times separating consecutive reversals of direction perform an alternating renewal process. In the case of Erlang-distributed interrenewal times, explicit expressions of the transition densities are obtained in terms of a suitable two-index pseudo-Bessel function. Some results on the distribution of the maximum of the process are also disclosed.
It is well known that a simple closed-form formula exists for the stationarydistribution of the workload in M/GI/1 queues. In this paper, we extend this to the general stationary framework. Namely, we consider a work-conserving single-server queueing system, where the sequence of customers’ arrival epochs and their service times is described as a general stationary marked point process, and we derive a closed-form formula for the stationary workload distribution. The key to our proof is two-fold: one is the Palm-martingale calculus, that is, the connection between the notion of Palm probability and that of stochastic intensity. The other is the preemptive-resume last-come, first-served discipline.
The application of the generalised ballot theorem to queueing theory leads to elegant results for the simple M/G/1 queue. It is thought that such results are not possible for more general M/G/1-type queues. We, however, derive a batch ballot theorem which can be applied to derive the first passage distribution matrix, G, for the general M/G/1-type queue.
For a compound Poisson dam with exponential jumps and linear release rate (shot-noise process), we compute the Laplace-Stieltjes transform (LST) and the mean of the hitting time of some positive level given that the process starts from some given positive level. The solution for the LST is in terms of confluent hypergeometric functions of the first and second kinds (Kummer functions).
During DNA replication, small fragments of DNA are formed. These have been observed experimentally and the mechanism of their formation modelled mathematically. Using the stochastic model of Cowan and Chiu (1992), (1994), we find the probability distribution of the number of fragments. A new discrete distribution arises. The work has interest as an application of the recent theory on quasirenewal equations in Piau (2000).
Many failure mechanisms can be traced to an underlying deterioration process, and stochastically changing covariates may influence this process. In this paper we propose an alternative model for assessing a system's reliability. The proposed model expresses the failure time of a system in terms of a deterioration process and covariates. When it is possible to measure deterioration as well as covariates, our model provides more information than failure time for the purpose of assessing and improving system reliability. We give several properties of our proposed model and also provide an example.
We consider the sum Sd of record values in a sequence of independentrandom variables that are uniformly distributed on 1,…,d. This sum can be interpreted as the total amount of time spent in record lifetimes in the standard renewal theoretic setup. We investigate the distributional limit of Sd and some related quantities as d→∞. Some explicit values are given for d=6, a case that can be interpreted as a simple game of chance.
Sharp upper and lower bounds are derived for the solution of renewal equations. These include as special cases exponential inequalities, some of which have been derived for specific renewal equations. Together with the well-known Cramér-Lundberg asymptotic estimate, these bounds give additional information about the behaviour of the solution. Nonexponential bounds, which are of use in connection with defective renewal equations, are also obtained. The results are then applied in examples involving the severity of insurance ruin, age-dependent branching processes, and a generalized type II Geiger counter.
We use multi-type branching process theory to construct a cell population model, general enough to include a large class of such models, and we use an abstract version of the Perron-Frobenius theorem to prove the existence of the stable birth-type distribution. The generality of the model implies that a stable birth-size distribution exists in most size-structured cell cycle models. By adding the assumption of a critical size that each cell has to pass before division, called the nonoverlapping case, we get an explicit analytical expression for the stable birth-type distribution.