We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is to study two notions of stochastic comparisons of non-negative random variables via ratios that are determined by their Laplace transforms. Some interpretations of the new orders are given, and various properties of them are derived. The relationships to other stochastic orders are also studied. Finally, some applications in reliability theory are described.
Assessing the reliability of computer software has been an active area of research in computer science for the past twenty years. To date, well over a hundred probability models for software reliability have been proposed. These models have been motivated by seemingly unrelated arguments and have been the subject of active debate and discussion. In the meantime, the search for an ideal model continues to be pursued. The purpose of this paper is to point out that practically all the proposed models for software reliability are special cases of self-exciting point processes. This perspective unifies the very diverse approaches to modeling reliability growth and provides a common structure under which problems of software reliability can be discussed.
We consider some single-server queues with general service disciplines, where the family of the queueing processes are parameterized by the service time distributions. Through the smoothed perturbation analysis (SPA) technique, we present under some mild conditions a unified approach to give the strongly consistent estimator for the gradient of the steady-state mean sojourn time with respect to the parameter of service time distributions, provided that it exists. Although the implementation of the SPA requires the additional sub-paths in general, the derived estimator is given as suitable for single-run computation. Simulation results are presented for queues with non-preemptive and preemptive-resume priority disciplines which demonstrate the performance of our estimators.
This note introduces reliability issues to the analysis of queueing systems. We consider an M/G/1 queue with Bernoulli vacations and server breakdowns. The server uptimes are assumed to be exponential, and the server repair times are arbitrarily distributed. Using a supplementary variable method we obtain a transient solution for both queueing and reliability measures of interest. These results provide insight into the effect of server breakdowns and repairs on system performance.
We relate the equilibrium size of an M/M/8 type queue having an intermittent arrival stream to a perpetuity, the solution of a random difference equation. One consequence is a classical result for ranked server systems, previously obtained by generating function methods.
Consider a fork-join queue, where each job upon arrival splits into k tasks and each joins a separate queue that is attended by a single server. Service times are independent, exponentially distributed random variables. Server i works at rate , where μ is constant. We prove that the departure process becomes stochastically faster as the service rates become more homogeneous in the sense of stochastic majorization. Consequently, when all k servers work with equal rates the departure process is stochastically maximized.
We show that for a certain storage network the backward content process is increasing, and when the net input process has stationary increments then, under natural stability conditions, the content process has a stationary version under which the cumulative lost capacities have stationary increments. Moreover, for the feedforward case, we show that under some minimal conditions, two content processes with net input processes which differ only by initial conditions can be coupled in finite time and that the difference of two content processes vanishes in the limit if the difference of the net input processes monotonically approaches a constant. As a consequence, it is shown that for the natural stability conditions, when the net input process has stationary increments, the distribution of the content process converges in total variation to a proper limit, independent of initial conditions.
Explicit formulas for the time congestion and the call blocking probability are derived in a single server loss system whose total input consists of a finite superposition of independent general stationary traffic streams with exponentially distributed service times. The results are used for studying to what extent two arrival processes with coinciding customer-stationary state distributions are similar or even identical, and whether an arrival process with coinciding customer-stationary and time-stationary state distributions is of the Poisson type.
A characterization of the exponential distribution based on a relevation-type equation and its discrete version are extended to the case of multidimensional spaces via variants of the Choquet–Deny theorem. Comments on some recent results in the literature are made.
Consider a system of interacting finite Markov chains in continuous time, where each subsystem is aggregated by a common partitioning of the state space. The interaction is assumed to arise from dependence of some of the transition rates for a given subsystem at a specified time on the states of the other subsystems at that time. With two subsystem classes, labelled 0 and 1, the superposition process arising from a system counts the number of subsystems in the latter class. Key structure and results from the theory of aggregated Markov processes are summarized. These are then applied also to superposition processes. In particular, we consider invariant distributions for the level m entry process, marginal and joint distributions for sojourn-times of the superposition process at its various levels, and moments and correlation functions associated with these distributions. The distributions are obtained mainly by using matrix methods, though an approach based on point process methods and conditional probability arguments is outlined. Conditions under which an interacting aggregated Markov chain is reversible are established. The ideas are illustrated with simple examples for which numerical results are obtained using Matlab. Motivation for this study has come from stochastic modelling of the behaviour of ion channels; another application is in reliability modelling.
A number of recent papers have exhibited classes of queueing networks, with batches of customers served and routed through the network, which have generalised product-form equilibrium distributions. In this paper we look at these from a new viewpoint. In particular we show that, under standard assumptions, for a network to possess an equilibrium distribution that factorises into a product form over the nodes of the network for all possible transition rates, it is necessary and sufficient that it be equivalent to a suitably-defined single-movement network. We consider also the form of the state space for such networks.
We consider the problem of the optimal duration of a burn-in experiment for n identical units with conditionally exponential life-times of unknown parameter Λ. The problem is formulated as an optimal stopping problem for a suitably defined two-dimensional continuous-time Markov process. By exploiting monotonicity properties of the statistical model and of the costs we prove that the optimal stopping region is monotone (according to an appropriate definition) and derive a set of equations that uniquely determine it and that can be easily solved recursively. The optimal stopping region varies monotonically with the costs. For the class of problems corresponding to a prior distribution on Λ of type gamma it is shown how the optimal stopping region varies with respect to the prior distribution and with respect to n.
Using a matrix approach we discuss the first-passage time of a Markov process to exceed a given threshold or for the maximal increment of this process to pass a certain critical value. Conditions under which this first-passage time possesses various ageing properties are studied. Some results previously obtained by Li and Shaked (1995) are extended.
It is shown that the stationary excursions above level x for the stationary M/G/1 queue with the service time distribution belonging to a certain class of subexponential distributions are asymptotically of two types as x →∞: either the excursion starts with a jump from a level which is O(1) and the initial excess over x converges to ∞, or it starts from a level of the form x – O(1) and the excess has a proper limit distribution. The two types occur with probabilities ρ, resp. 1 – ρ.
Queueing systems with repeated requests have many useful applications in communications and computer systems modeling. In the majority of previous work the repeat requests are made individually by each unsatisfied customer. However, there is in the literature another type of queueing situation, in which the time between two successive repeated attempts is independent of the number of customers applying for service. This paper deals with the M/G/1 queue with repeated orders in its most general setting, allowing the simultaneous presence of both types of repeat requests. We first study the steady state distribution and the partial generating functions. When the service time distribution is exponential we show that the performance characteristics can be expressed in terms of hypergeometric functions.
Upper and lower bounds are derived for the tail probabilities of compound distributions using simple properties of the claim size distribution. General bounds are then obtained for various classes of claim size distributions. Some examples are given.
A system of GIx/G/∞ queues in tandem is considered where the service times of a customer are correlated but the service time vectors for customers are independently and identically distributed. It is shown that the binomial moments of the joint occupancy distribution can be generated by a sequence of renewal equations. The distribution of the joint occupancy level is then expressed in terms of the binomial moments. Numerical experiments for a two-station tandem queueing system demonstrate a somewhat counterintuitive result that the transient covariance of the joint occupancy level decreases as the covariance of the service times increases. It is also shown that the analysis is valid for a network of GIx/SM/∞ queues.
This paper compares the convergence rate properties of three storage models (dams) driven by time-homogeneous jump process input: the infinitely high dam, the finite dam, and the infinitely deep dam. We show that the convergence rate of the infinitely high dam depends on the moment properties of the input process, the finite dam always approaches its limiting distribution exponentially fast, and the infinitely deep dam approaches its limiting distribution exponentially fast under very general conditions. Our methods make use of rate results for regenerative processes and several sample path orderings.
Braess's paradox is said to occur in a network if the addition of an extra link leads to worse performance. It has been shown to occur in transportation networks (such as road networks) and also in queueing networks. Here, we show that it can occur in loss networks.
The gating mechanism of a single ion channel is usually modelled by a continuous-time Markov chain with a finite state space. The state space is partitioned into two classes, termed ‘open’ and ‘closed’, and it is possible to observe only which class the process is in. In many experiments channel openings occur in bursts. This can be modelled by partitioning the closed states further into ‘short-lived’ and ‘long-lived’ closed states, and defining a burst of openings to be a succession of open sojourns separated by closed sojourns that are entirely within the short-lived closed states. There is also evidence that bursts of openings are themselves grouped together into clusters. This clustering of bursts can be described by the ratio of the variance Var (N(t)) to the mean [N(t)] of the number of bursts of openings commencing in (0, t]. In this paper two methods of determining Var (N(t))/[N(t)] and limt→∝ Var (N(t))/[N(t)] are developed, the first via an embedded Markov renewal process and the second via an augmented continuous-time Markov chain. The theory is illustrated by a numerical study of a molecular stochastic model of the nicotinic acetylcholine receptor. Extensions to semi-Markov models of ion channel gating and the incorporation of time interval omission are briefly discussed.